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Abstract 

With view to synthesize and characterize the enhanced pharmaceutical properties of the solid-liquid dispersions of binary 

drug system through green chemical technique the present communication have been undertaken for detailed investigation 

of thermodynamic and interfacial properties of benzimidazole (BI) and β. naphthol (βN) binary eutectic and non-eutectic 

drug dispersions. Eutectic solid dispersion was observed at 0.657 mole fraction of β. naphthol (βN) and at melting temperature 

90C.  

Thermodynamic quantities; Partial and Integral  excess Gibbs energy (gE), excess enthalpy (hE), excess entropy (sE) of eutectic 

and non-eutectic dispersions were determined with the help of activity coefficient data. The negative deviation from ideal 

behavior has been seen in the system which refers stronger association between unlike molecules during formation of binary 

mix. The negative value of Gibbs free energy of mixing (GM) refers the mixing for all eutectic and non-eutectic dispersions 

is spontaneous. The solid-liquid interfacial characteristics i.e., entropy of fusion per unit volume (SV), solid-liquid interfacial 

energy (), roughness parameter (α), grain boundary energy and roughness parameter (α) of eutectic and non-eutectic solid 

dispersions have been reported.  

The size of critical nucleus at different undercoolings has been found in nanoscale, which may be a big significance in 

pharmaceutical world. The value of roughness parameter, α > 2 was observed which manifests the faceted and irregular 

growth leads in the system.   

Keywords: SLE, Mixing and excess thermodynamic functions, thermal stability, Interfacial energy, Driving force of 

nucleation, Critical radius. 

INTRODUCTION  

Benzimidazols have been reported to have diverse pharmaceutical and biological activities. The compounds bearing 

imidazolyl moiety possess a wide spectrum of biological activities which is related to their capacity to transfer electrons to 

scavenge reactive oxygen species. B.naphthol nucleus is an biologically important ties in the vitamin B12 which show diverse 

types of biological and pharmacological properties [1-6]. Several derivatives of benzimidazoles have been reported as 

antagonists, dopamine β-hydroxylase inhibitors and inhibitors for endothelial cell growth. Its derivatives have widely been 

reported as antimicrobial and anti-tumor agents. The chemistry and pharmacology of hetrocyclic benzimidazoles have been 

of very significant interest to medicinal chemistry because its new drugs designing a number of derivatives possess various 

biological and medicinal activities [7-9] such as antioxidant, anticonvulsant, antifungal, antiprotozoal, antiviral, anthelmintic, 

antihypertensive, antineoplastic, anti-inflammatory, analgesic, anti-hepatitis B virus and antiulcer activity. The optimization 

of benzimidazole based structures has got better result in various drugs available in the market, as mebendazole 

(Anthelmintic), pimobendan (Ionodilator), and omeprazole (Proton pump inhibitor). In it benzene ring is  fused to the 4 and 

5 positions of an imidazole ring. Benzimidazole is also 1, 3-benzodiazoles. These days researches on the solid dispersion of 

binary drug systems have been gaining credit and used as model system for studying the rapid growth and vast 

pharmacological  nano particles drugs which are very important parameters in controlling the final physical , chemical and 

medicinal  properties of solid dispersion. Further study on binary drug dispersions to a great extent can be done with the help 

of kinetic, themodynamic and interfacial investigation. For that detailed investigations of β-naphthol (βN) and benzimidazole 

(BI) binary eutectic and non-eutectic drug dispersions have been mentioned in this research article. β-naphthol have gained 

much significant importance in the area of pharmaceutical applications. Some of the derivatives of β-naphthol have been 

highlighted as anticancer, antimicrobial and anti-tumor agents. The scientific and medicinal worth of BI recognized as 

multidrug-resistant mycrobacterium, Methicillin-resistant staphytococus aureus, tuberculosis, and plasmid-antibiotic- 

resistant genes which are responsible for the major global lethal and noscomial infections and death of over 4 million people 

per year. The mild neuroleptic action of BI has got bigger credit comparatively similar equivalents compounds for the 

management of these infections. It also inhibits micro-organisms causes for antibiotic resistance [10] and calcium binding to 

calmodulion type proteins of the calcium channel verapamil.  

Due to distinguished biological and pharmacological importants of β-naphthol and benzimidazoles, may take a good lead in 

developing and designing of new binary drugs. However, very little information has been reported on the binary drug solid 

dispersion materials. In recent pasts pharmaceutical properties of some binary drug dispersion has been emphasizing on the 

solubility, dissolution rate, hygroscopicity and chemical stability. Keeping in view of better pharmacological performance 

and efficacy of binary product, it is aimed to synthesize the benzimidazole (BI) and β-naphthol (βN) binary drug dispersions 
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in the solid state using green chemical process without aid of solvent and to emphasize thermodynamic and investigation 

such as phase diagram, thermodynamic excess and mixing functions, thermal stability, interfacial energy, driving force of 

solidification and surface roughness.  

EXPERIMENTAL DETAILS 

β-naphthol (βN) (BDH, India) and Benzimidazoles (BI) (Sigma, India) were used for investigation. The melting point of β-

naphthol and Benzimidazoles was found 124°C and 170°C respectively. For measuring the phase diagram of βN -BI system, 

mixtures of different compositions of both were taken in glass test tubes and prepared samples by repeated heating and 

followed by chilling in ice. The melting temperatures of solid dispersions were determined by the thaw-melt method [11]. 

The melting and thaw temperatures were determined using Toshniwal melting point apparatus fitted with a precision 

thermometer. The value of enthalpy of fusion of β-naphthol and Benzimidazoles was determined by using Stanton Redcroft 

STA-780 series unit [12].  

RESULTS AND DISCUSSION 

SLE Study 

The solid liquid equilibrium (SLE) digram of βN -BI system reported in Table 1 and in fig.1 shows the formation of an 

eutectic (E) and non-eutectics solid dispersions (A1-A9). The temperature of βN (124C) decreases on the addition of BI 

(M.P., 170C) and moves down minimum and further increases. Eutectic E (0.343 mole fraction of BI) is obtained at 90°C. 

At the eutectic temperature a liquid phase L and two solid phases (S1 and S2) exists in equilibrium and the system becomes 

invariant. Homogenous binary liquid exists in the region above the eutectic temperature and two solid phases got the region 

below the eutectic temperature.  

Thermodynamic Study 

The values of heats of fusion of eutectic and non-eutectic solid dispersions are calculated using the mixture law. The value 

of heat of fusion of binary eutectic and non-eutectic solid dispersions A1-A8 and E is mentioned in Table 1. The activity 

coefficient and activity of components for in the present system has been evaluated from the equation [13] given below  
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where i, and i  are mole fraction and activity coefficient of the component i in the liquid phase respectively. Hi is the 

heat of fusion of component i at its melting point Ti, Te is the melting temperature of solid dispersions and R is the gas 

constant. The value of activity and activity coefficient of the components in the binary product, are very helpful to evaluate  

mixing and excess thermodynamic functions. 

Mixing Functions 

For illustrating the mixing characteristics of components in the binary system Integral molar free energy of mixing, (GM), 

molar enthalpy of mixing HM) and molar entropy of mixing (SM) and partial molar free energy of  mixing (G-
i
M  )  of 

the binary solid dispersions were determined by the following equations 
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where G-
i
M (μ-

i
M) is mixing chemical potential of componenti in binary mix. i and ai are the activity coefficient and 

activity of component respectively. The negative value [14] of molar free energy of mixing of solid dispersions mentioned 

in Table 2 confirms the mixing in all cases is spontaneous. The integral molar enthalpy of mixing value corresponds to the 

value of excess integral molar free energy of the system favors the regular behavior of the binary solutions.  

Excess Functions 

The nature of the interactions between the components of binary eutectic and non-eutectic Products is highlighted on the 

basis of values of the excess thermodynamic functions such as integral excess integral free energy (gE), excess integral 

entropy (sE) and excess integral enthalpy (hE) which were calculated as below  
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The excess chemical potential 
M

i

  or excess partial free energy of mixing 
E

ig 
 is defined as 

i
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         (9) 

The values of lni
 /T can be determined by the slope of liquidus curve near the alloys. The values of the excess 

thermodynamic functions are reported in Table 3. The value of the excess free energy is a measure of the departure of the 

system from ideal behavior. The reported excess thermodynamic data favor the previous report of plausible interaction 

between the parent components during the formation of mix. The negative gE value [15] for eutectic and A3, A4, A5, A6 

non-eutectic solid dispersions leads the ground of stronger interaction between unlike molecule s in binary mix. The positive 

gE value for A1,A2 and A7-A9 favors the  interaction of stronger association between like molecules of binary product. The 

excess entropy gain in the system is due to the change in configurational energy and non continuity in potential energy which 

indicates an increase in randomness in the system.  

Gibbs-Duhem Equation 

The partial molar quantity, activity and activity coefficient are very helpful to derive Gibbs-Duhem equation [16]  
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A graph plotted using equation (13) between 
M

NH 

 and βN/BI measures the solution of the partial molar heat of mixing of 

a constituent βN in binary mix and plot determine between βN/BI and  lnaβ  determines the value of activity of component 

βN in binary mix. 

Stability Function 

For elucidating thermodynamic stabilizing behavior of binary product, thermodynamic stability and excess stability functions 

has been determined by the second derivative of their molar free energy and excess energy respectively, with respect to the 

mole fraction of either constituent: 
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The value of stability and excess stability were calculated by multiplying the slope of lna vs (1 – x)2 and ln vs (1 – x)2 plots 

with -2RT. The best polynomial equation of the curve generated is given as: 

12108642 )1(47.41)1.(126)1(84.146)1(99.81)1(44.21)1(68.3ln xxxxxx    (16) 
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The slope of the curve (figure) obtained by differentiating the above equation with respect to (1– x)2  has been used to 

calculate the excess stability of the βN -BI system. The values of total stability to the ideal stability and defined as 

 
)x1(x

RT
Stability Ideal


        (16.1) 

These values remark there is appreciable thermodynamic stability in the binary product. The fig.2 for the stability, excess 

stability and ideal stability in the form of composition and partial Gibb’s energy favors the formation of the binary products 

and their mixing. 

Interfacial Investigation 

The Solid-Liquid Interfacial Energy () 

Previous report is evident for measurement of  value which keeps a variation of 50-100% between experimentally observed 

and calculated value of interfacial energy ‘σ’, determined using the value of melting enthalpy change. It was found that there 

is a good agreement [17] of calculated value of the solid-liquid interfacial energy (σ) from melting enthalpy change and 

values obtained from experiment. Turnbull relationship [18] is related to interfacial energy and enthalpy change which was 

determined for binary solid dispersions using Turnbull equation. 
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The coefficient C tents between 0.33 to 0.35 for nonmetallic system, Vm and N are molar volume and  Avogadro’s constant 

respectively. The value of the solid-liquid interfacial energy of β. naphthol and benzimidazole was found to be 3.81 x 10-02 

and 2.84 x 10-02 J m-2 respectively and σ value of the solid dispersions was given in Table 1.  

Gibbs-Thomson Coefficient (τ) 

The value of Gibbs-Thomson coefficient also measures value of  based on equal thermal conductivities of solid and liquid 

phases for some transparent materials. It was calculated using Gibbs-Thomson equation for a planar grain boundary on planar 

solid-liquid interface of binary product and is expressed as    
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where r is the radius of grooves of interface, τ is the Gibbs-Thomson coefficient and ∆T is the dispersion in equilibrium 

temperature and similar type of results were determined by using the help of Hunt and Lu method [19] for the materials 

having known grain boundary shape, temperature gradient, and the ratio of thermal conductivity of the equilibrated liquid 

phases to solid phase (R = KL/KS).The Gibbs-Thomson coefficient for βN, BI and their solid dispersions are found in the 

range of 7.61 – 8.00 x 10-06 Km and is reported in Table 1. 

Interfacial Grain Boundary Energy (gb) 

The internal surface grain boundary is can be understood in a the best way to nucleation of materials on surfaces during 

liquid-solid transformation. A considerable force is employed at the grain boundary groove in anisotropic interface. Using a 

numerical method [20] the interfacial grain boundary energy (σgb) was determined without applying the temperature gradient 

for the grain boundary groove shape. The grain boundary energy can be obtained by the equation: 

     cos2gb
                                                  (19) 

where θ is equilibrium contact angle precipitates at solid-liquid interface of grain boundary. In case zero contact angle the 

grain boundary energy could be twice the solid-liquid interfacial energy. The value of σgb for solid βN and BI was found to 

be 5.49 x 10-2 and 7.37 x 10-2Jm-2 respectively and the value for all solid dispersions is given in Table 1. 

The Effective Entropy Change (Sv) 

The effective entropy change (Sv) and the volume fraction of phases in the binary dispersion are inter-linked and jointly to 

decide the interfacial morphology during solidification of materials. The entropy of fusion (S = H/T) value (Table 1) of 

solid dispersions is calculated by heat of fusion values of the materials because the volume fraction of the two phases depends 

on the ratio of effective entropy change of the phases. The effective entropy change per unit volume (∆SV) is given by 

     

m

V
V

1
.

T

H
S


                                                (20) 

Where Vm is the molar volume of solid phase and T is the melting temperature. The entropy of fusion per unit volume (∆SV) 

for βN and BI was found 373 and 477 kJK-1m-3 respectively. Values of ∆SV for all are reported in Table 1.  
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The Driving Force of Nucleation (Gv) 

Gibb’s free energy generated during growth of crystalline solid is due to change in enthalpy, entropy and specific volume. A 

metastable phase usually leads in a supersaturated or super-cooled liquid. The driving force of nucleation during liquid-solid 

transformation arises being a difference in Gibb’s energy of the two phases. However various theories of solidification 

process were discussed taking a base of diffusion, kinetic and  thermodynamic features. The lateral motion of rudementry 

steps in liquid brings forth stepwise with non-uniform surface at low driving force while continuous and uniform surface 

raises at sufficiently high driving force. The driving force of nucleation during solidification (∆GV) was determined at 

different undercoolings (T) as follows [21]  

  ∆GV = SvT        (21) 

 It is well known the surface free energy which resists ∆GV increases due to creation of a new solid-liquid interface. Actually 

the solid phase in surrounding in super saturated liquids nucleates as small spherical cluster of radius arising due to random 

motion of atoms. The value of ∆GV for each solid dispersions are shown in the Table 4. 

The Critical Radius (r*) 

During liquid-solid transformation embryos originate rapidly and dispersed around unsaturated liquid which on undercooling 

the liquid becomes super saturated and provides embryo of a critical size with radius r* for nucleation. It has been determined 

by the Chadwick relation [22] 
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where ∆HV, σ are the enthalpy of fusion of the compound per unit volume and the interfacial energy respectively. The critical 

size of the nucleus for the components solid dispersions was evaluated at different undercoolings and values are mentioned 

in Table 5. It is evident from table that the critical nucleus size of materials decreases with increase in the undercooling of 

the melt. The existence of embryo and size of embryo can be imagined in the liquid at any temperature. The value of r* for 

pure components (βN and BI) and solid dispersions lies between 43.5 to 160 nm at undercooling 1– 3.5°C. 

Critical Free Energy of Nucleation (G*) 

A localized activation or critical free energy of nucleation (G*) generating critical nucleus is evaluated [23] as 
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16
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      (23) 

The value of G* for binary products and pure components has been found in the range of 10‾15 to 10‾16 J per molecule at 

different undercoolings, and has been reported in Table 6. 

Interface Morphology 

The growth Morphology on the surfaces is highlighted on the combined ground of thermodynamics, kinetics, fluid dynamics, 

crystal structures and interfacial sciences. In past the solid-liquid interface morphology has been predicted in the light of the 

value of the entropy of fusion. The type of growth from a binary melt [24] depends upon a factor α, defined as: 

                  
R

S

RT

H 



                                                                        (24) 

where ∆S/R (Jackson’s roughness parameter α) is the entropy of fusion (dimensionless),  is a crystallographic factor 

depending upon the geometry of the molecules and has a value less than or equal to one and R is the gas constant. The solid-

liquid interface is atomically rough and exhibits non-faceted growth in the case of α value be less than two. The value of 

Jackson’s roughness parameter (α) is reported in Table 1. For the entire eutectic and non- eutectic solid dispersions the  

value was found greater than 2 indicating the faceted [25] growth leads in all the cases. 

CONCLUSION  

The solid-liquid equilibrium phase diagram of βN -BI system forms of simple eutectic solid dispersion. The thermodynamic 

mixing function, GM values for eutectic and non-eutectics are being found negative which favours spontaneous mixing in 

all the binary drugs. The negative value of gE for eutectic and non-eutectic A3-A6 favours the stronger association between 

unlike molecules and positive gE value for A1-A2 and A7-A9 suggests there is stronger association between like molecules.  
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Fig. 1 Phase Diagram of BI - βN System 

 

Fig. 2 Stability Graph of BI - βN system 
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Table 1: Phase composition, melting temperature, heat of fusion(H), values of entropy of fusion per unit volume (Sv), 

interfacial energy(), grain boundary energy(gb), Gibbs-Thomson coefficient () and roughness parameter() 

 

Alloy BI MP 



J/mol) 
S 

(J/mol/K) 

× 102

J/m 

gb × 102

J/m 
Sv 

( kJ/m3/K) 



Hv 

 × 106 

Km 

A1 0.120 118 17864.87 45.69 5.50 2.94 5.69 395.52 154.65 7.44 

A2 0.233 101 18200.95 48.67 5.85 3.04 5.88 430.64 161.06 7.07 

E 0.343 90 18525.99 51.04 6.14 3.14 6.07 461.53 167.54 6.81 

A3 0.365 92 18589.77 50.93 6.13 3.16 6.11 462.58 168.84 6.84 

A4 0.449 96 18839.07 51.05 6.14 3.24 6.26 471.68 174.05 6.87 

A5 0.549 102 19136.08 51.03 6.14 3.34 6.45 481.33 180.50 6.94 

A6 0.647 108 19425.50 50.99 6.13 3.44 6.64 490.93 187.04 7.00 

A7 0.740 138 19701.35 47.94 5.77 3.53 6.82 470.90 193.54 7.50 

A8 0.830 150 19965.79 47.20 5.68 3.63 7.00 472.87 200.02 7.67 

A9 0.917 166 20224.23 46.07 5.54 3.72 7.19 470.64 206.61 7.91 

BI  174 20470.00 45.79 5.51 3.81 7.37 476.78 213.12 8.00 

βN  124 17510.00 44.11 5.31 2.84 5.49 373.23 148.17 7.61 
 

Table 2: Value of partial and integral mixing of Gibbs free energy(GM), enthalpy() and entropy(S) of  BI-βN 

system 

Alloy GBI
M 

J/mol 

GβN
M 

J/mol 

GM 

J/mol 

BI‾M 

 J/mol 

HβN
– M  

J/mol 

 

J/mol 

SBI
– M 

J/mol/K 

SβN
– M 

J/mol/K 

S 

J/mol/K 

A1 -2564.47 -264.63 -540.36 4331.00 150.52 651.72 17.64 1.06 3.05 

A2 -3342.98 -1014.43 -1557.98 1180.86 -187.85 131.64 12.10 2.21 4.52 

E -3846.71 -1499.60 -2305.22 -619.51 -230.73 -364.17 8.89 3.50 5.35 

A3 -3755.12 -1411.39 -2266.35 -694.89 -34.30 -275.27 8.38 3.77 5.46 

A4 -3571.95 -1234.96 -2284.29 -1115.47 593.60 -173.79 6.66 4.96 5.72 

A5 -3297.18 -970.33 -2248.58 -1429.59 1514.72 -102.74 4.98 6.63 5.72 

A6 -3022.42 -705.69 -2204.91 -1643.84 2593.89 -148.47 3.62 8.66 5.40 

A7 -1648.59 617.48 -1060.14 -621.18 5224.71 896.88 2.50 11.21 4.76 

A8 -1099.06 1146.75 -716.51 -442.33 7371.38 888.66 1.55 14.72 3.79 

A9 -366.35 1852.44 -182.13 -49.98 10935.28 862.12 0.72 20.69 2.38 

 

Table 3: Value of partial and integral excess Gibbs free energy(gE), enthalpy(hE) and entropy(sE) of BI-βN system 

Alloy gBI‾E 

J/mol 

gβN‾E 

J/mol 

gE 
J/mol 

hBI‾E 

J/mol 

hβN‾E 

J/mol 

hE 

J/mol 

sBI‾E 

J/mol/K 

sβN‾ E 

J/mol/K 

sE 

J/mol/K 

A1 4331.00 150.52 651.72 85548.24 -3068.03 7556.18 207.72 -8.23 17.66 

A2 1180.86 -187.85 131.64 16894.38 -6132.09 -757.02 42.01 -15.89 -2.38 

E -619.51 -230.73 -364.17 75281.73 32532.37 47205.66 209.09 90.26 131.05 

A3 -694.89 -34.30 -275.27 25075.85 8645.74 14639.21 70.60 23.78 40.86 

A4 -1115.47 593.60 -173.79 17347.95 13308.41 15122.21 50.04 34.46 41.45 

A5 -1429.59 1514.72 -102.74 11453.81 21405.66 15938.61 34.36 53.04 42.78 

A6 -1643.84 2593.89 -148.47 -6296.34 8483.14 -1081.10 -12.21 15.46 -2.45 

A7 -621.18 5224.71 896.88 
-

10984.85 9531.15 -5657.26 -25.22 10.48 -15.95 

A8 -442.33 7371.38 888.66 69182.13 419150.71 128795.78 164.60 973.47 302.38 

A9 -49.98 10935.28 862.12 -7190.02 129152.00 4130.46 -16.26 269.29 7.44 
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Table 4: Value of volume free energy change (Gv) for BI-βN system of different undercoolings (T) 

Alloy Gv(J/cm3) 

1.0 1.5 2.0 2.5 3.0 3.5 

A1 0.40 0.59 0.79 0.99 1.19 1.38 

A2 0.43 0.65 0.86 1.08 1.29 1.51 

E 0.46 0.69 0.92 1.15 1.38 1.62 

A3 0.46 0.69 0.93 1.16 1.39 1.62 

A4 0.47 0.71 0.94 1.18 1.42 1.65 

A5 0.48 0.72 0.96 1.20 1.44 1.68 

A6 0.49 0.74 0.98 1.23 1.47 1.72 

A7 0.47 0.71 0.94 1.18 1.41 1.65 

A8 0.47 0.71 0.95 1.18 1.42 1.66 

A9 0.47 0.71 0.94 1.18 1.41 1.65 

BI 0.48 0.72 0.95 1.19 1.43 1.67 

βN 0.37 0.56 0.75 0.93 1.12 1.31 
Table 5: Critical size of nucleus (r*) at different undercoolings (T) 

Alloy r*(nm) 

1.0 1.5 2.0 2.5 3.0 3.5 

A1 148.82 99.21 74.41 59.53 49.61 42.52 

A2 141.31 94.21 70.66 56.53 47.10 40.38 

E 136.17 90.78 68.08 54.47 45.39 38.90 

A3 136.72 91.15 68.36 54.69 45.57 39.06 

A4 137.43 91.62 68.72 54.97 45.81 39.27 

A5 138.71 92.47 69.35 55.48 46.24 39.63 

A6 139.96 93.31 69.98 55.98 46.65 39.99 

A7 149.98 99.98 74.99 59.99 49.99 42.85 

A8 153.35 102.2 76.67 61.34 51.12 43.81 

A9 158.12 105.4 79.06 63.25 52.71 45.18 

BI 159.98 106.7 79.99 63.99 53.33 45.71 

βN 152.25 101.5 76.13 60.90 50.75 43.50 
Table 6: Value of G* for binary product of BI-βN system at different undercooling (T) 

Alloy G*1016 (J) 

1.0 1.5 2.0 2.5 3.0 3.5 

A1 27.32 12.14 6.83 4.37 3.04 2.23 

A2 25.46 11.32 6.37 4.07 2.83 2.08 

E 24.41 10.85 6.10 3.91 2.71 1.99 

A3 24.77 11.01 6.19 3.96 2.75 2.02 

A4 25.65 11.40 6.41 4.10 2.85 2.09 

A5 26.91 11.96 6.73 4.31 2.99 2.20 

A6 28.20 12.53 7.05 4.51 3.13 2.30 

A7 33.28 14.79 8.32 5.33 3.70 2.72 

A8 35.73 15.88 8.93 5.72 3.97 2.92 

A9 38.98 17.32 9.75 6.24 4.33 3.18 

BI 40.91 18.18 10.23 6.54 4.55 3.34 

βN 27.60 12.27 6.90 4.42 3.07 2.25 
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