Main Article Content

Abstract

Purpose of the study: The main objective of the present work is to assess the efficacy of the restoration endeavour in Bengaluru lakes, Karnataka, India. Rapid urbanisation coupled with industrialisation in urban areas has greatly stressed the available water resources qualitatively and quantitatively. This has also resulted in the generation of enormous sewage and wastewater after independence.


Method:  Environmental monitoring of 40 restored lakes was carried out to identify the key issues and assessing water quality (physical, chemical and biological). Weighted arithmetic water quality index (WQI) and Pearson’s correlation coefficient (r) was determined using data of physicochemical parameters of lakes. Principal Component Analysis (PCA) performed using PAST3 software to identify the factors responsible for variations in water quality.


Main Findings: The monitored forty lakes distributed across the three major watersheds namely Koramangala and Challaghatta valley, Vrishabhavathi valley and Hebbal valley were grouped under three different WQI status like good water quality (10%); poor water quality (37%) and very poor water quality (53%). Majority of these restored lakes has become polluted which indicates improper decontamination and poor maintenance of restored lakes.


Application of this study: This study provides vital information for policymakers to understand the gaps which helps in the course correction while implementing further rejuvenation of lakes.


Novelty/Originality of this study: The efficacy of rejuvenation was assessed through integrated cost-effective scientific approaches for the lake monitoring.  Monitoring during the pre and post rejuvenation period has aided in assessing the efficacy of rejuvenation, which is done for the first time in India.

Keywords

lake rejuvenation water quality index bengaluru water pollution Multivariate analysis

Article Details

How to Cite
Ramchandra, T., Sincy, V., & Asulabha, K. (2020). EFFICACY OF REJUVENATION OF LAKES IN BENGALURU, INDIA. Green Chemistry & Technology Letters, 6(1), 14–26. https://doi.org/10.18510/gctl.2020.613

References

  1. Annadotter, H., Cronberg, G., Aagren, R., Lundstedt, B., Nilsson, P.A., & Strobeck, S. (1999). Multiple techniques for lake restoration. Hydrobiologia, 395/396, 77-85. https://doi.org/10.1023/A:1017011132649 DOI: https://doi.org/10.1023/A:1017011132649
  2. APHA, AWWA, WEF (2005). Standard methods for the examination of water and wastewater. 21st Edition. D.C., Washington: American Public Health Association.
  3. Bhatia, D., Sharma, N.R., Kanwar, R., & Singh, J. (2018). Physicochemical assessment of industrial textile effluents of Punjab (India). Applied Water Science, 8, 1-12. https://doi.org/10.1007/s13201-018-0728-4 DOI: https://doi.org/10.1007/s13201-018-0728-4
  4. Carmichael, W.W., & Boyer, G.L. (2016). Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae, 54, 194-212. https://doi.org/10.1016/j.hal.2016.02.002 DOI: https://doi.org/10.1016/j.hal.2016.02.002
  5. Chaurasia, L. G., Singh, B. S., Singh, S., Gupta, K. M., Shukla, N., & Tandon, K. P. (2015). Water quality index and correlation study for the assessment of ground water quality of Allahabad city. Green Chemistry & Technology Letters, 1(1), 71-76. https://doi.org/10.18510/gctl.2015.1111 DOI: https://doi.org/10.18510/gctl.2015.1111
  6. Chen, K.N., Bao, C.H., & Zhou, W.P. (2009). Ecological restoration in eutrophic Lake Wuli: A large enclosure experiment. Ecological engineering, 35(11), 1646-1655. https://doi.org/10.1016/j.ecoleng.2008.10.009 DOI: https://doi.org/10.1016/j.ecoleng.2008.10.009
  7. Dondajewska, R., Kozak, A., Budzyńska, A., Kowalczewska-Madura, K., & Gołdyn, R. (2018a). Nature-based solutions for protection and restoration of degraded Bielsko Lake. Ecohydrology & Hydrobiology, 18(4), 401- 411. https://doi.org/10.1016/j.ecohyd.2018.04.001 DOI: https://doi.org/10.1016/j.ecohyd.2018.04.001
  8. Dondajewska, R., Kozak, A., Kowalczewska-Madura, K., Budzyńska, A., Gołdyn, R., Podsiadłowski, S., & Tomkowiak, A. (2018b). The response of a shallow hypertrophic lake to innovative restoration measures - Uzarzewskie Lake case study. Ecological engineering, 121, 72-82. https://doi.org/10.1016/j.ecoleng.2017.07.010 DOI: https://doi.org/10.1016/j.ecoleng.2017.07.010
  9. Dunalska, J.A., Napiórkowska-Krzebietke, A., Åawniczak-MaliÅ„ska, A., Bogacka-Kapusta, E., & WiÅ›niewski, G. (2018). Restoration of flow-through lakes - theory and practice. Ecohydrology & Hydrobiology, 18(4), 379-390. https://doi.org/10.1016/j.ecohyd.2018.06.009 DOI: https://doi.org/10.1016/j.ecohyd.2018.06.009
  10. Gołdyn, R., Podsiadłowski, S., Dondajewska, R., & Kozak, A. (2014). The sustainable restoration of lakes - towards the challenges of the Water Framework Directive. Ecohydrology & Hydrobiology, 14(1), 68-74. https://doi.org/10.1016/j.ecohyd.2013.12.001 DOI: https://doi.org/10.1016/j.ecohyd.2013.12.001
  11. Guo, Y., Liu, Y., Zeng, G., Hu, X., Li, X., Huang, D., Liu, Y., & Yin, Y. (2014). A restoration-promoting integrated floating bed and its experimental performance in eutrophication remediation. Journal of Environmental Sciences, 26(5), 1090-1098. https://doi.org/10.1016/S1001-0742(13)60500-8 DOI: https://doi.org/10.1016/S1001-0742(13)60500-8
  12. Ho, J.C., & Michalak, A.M. (2017). Phytoplankton blooms in Lake Erie impacted by both long-term and spring time phosphorus loading. Journal of Great Lakes Research, 43(3), 221-228. https://doi.org/10.1016/j.jglr.2017.04.001 DOI: https://doi.org/10.1016/j.jglr.2017.04.001
  13. Iscen, C.F., Emiroglu, O., Ilhan, S., Arslan, N., Yilmaz, V., & Ahiska, S. (2008). Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey. Environmental Monitoring and Assessment, 144(1-3), 269-276. https://doi.org/10.1007/s10661-007-9989-3 DOI: https://doi.org/10.1007/s10661-007-9989-3
  14. James, R.T., & Pollman, C.D. (2011). Sediment and nutrient management solutions to improve the water quality of Lake Okeechobee. Lake and Reservoir Management, 27(1), 28-40. https://doi.org/10.1080/07438141.2010.536618 DOI: https://doi.org/10.1080/07438141.2010.536618
  15. Juneja, T., & Chaudhary, A. (2013). Assessment of water quality and its effects on the health of residents of Jhunjhunu district, Rajasthan: A cross sectional study. Journal of Public Health & Epidemiology, 5(4), 186-191. https://doi.org/10.5897/JPHE12.096
  16. Ladu, J.L.C., Athiba, A.L., Lako, S.T.V., & Alfred, M.L. (2018). Investigation on the impact of water pollution on human health in Juba County, Republic of South Sudan. Journal of Environment Pollution and Human Health, 6(3), 89-95. https://doi.org/10.12691/jephh-6-3-2 DOI: https://doi.org/10.12691/jephh-6-3-2
  17. Mitsch, W.J. (2017). Solving Lake Erie’s harmful algal blooms by restoring the Great Black Swamp in Ohio. Ecological engineering, 108, 406-413. https://doi.org/10.1016/j.ecoleng.2017.08.040 DOI: https://doi.org/10.1016/j.ecoleng.2017.08.040
  18. Mood, N.C., Othman, F., Amin, N.F.M., & Adham, M.I. (2017). Effectiveness of Lake remediation towards water quality: Application in Varsity lake, University of Malaya, Kuala Lumpur. Sains Malaysiana, 46(8), 1221-1229. http://dx.doi.org/10.17576/jsm-2017-4608-07 DOI: https://doi.org/10.17576/jsm-2017-4608-07
  19. Quilliam, R. S., van Niekerk, M. A., Chadwick, D. R., Cross, P., Hanley, N., Jones, D.L., Vinten, A.J., Willby, N. & Oliver, D.M. (2015). Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land? Journal of Environmental Management, 152, 210-217. https://doi.org/10.1016/j.jenvman.2015.01.046 DOI: https://doi.org/10.1016/j.jenvman.2015.01.046
  20. Ramachandra, T.V., & Mujumdar, P.P. (2009). Urban floods: Case study of Bangalore. Journal of the National Institute of Disaster Management, 3(2), 1-98.
  21. Ramachandra, T.V., & Shwetmala, (2012). Decentralised carbon footprint analysis for opting climate change mitigation strategies in India. Renewable and Sustainable Energy Reviews, 16(8), 5820–5833. https://doi.org/10.1016/j.rser.2012.05.035 DOI: https://doi.org/10.1016/j.rser.2012.05.035
  22. Ramachandra, T.V., Asulabha, K.S., & Lone, A.A. (2014). Nutrient enrichment and proliferation of invasive macrophytes in urban lakes. Journal of Biodiversity, 5(1,2), 33-44. https://doi.org/10.1080/09766901.2014.11884749 DOI: https://doi.org/10.1080/09766901.2014.11884749
  23. Ramachandra, T.V., Aithal, B.H., & Sreejith, K. (2015a). GHG footprint of major cities in India. Renewable and Sustainable Energy Reviews, 44, 473-495. https://doi.org/10.1016/j.rser.2014.12.036 DOI: https://doi.org/10.1016/j.rser.2014.12.036
  24. Ramachandra, T.V., Asulabha, K.S., Sincy, V., Vinay, S., Bhat, S.P., & Aithal, B.H. (2015b). Sankey Lake: Waiting for an immediate sensible action, ENVIS Technical Report 74, CES, Indian Institute of Science, Bangalore.
  25. Ramachandra, T.V., & Aithal, B.H. (2016). Bengaluru's reality: Towards unlivable status with unplanned urban trajectory. Current Science, 110(12), 2207-2208
  26. Ramachandra, T.V., Sudarshan, P.B., Mahesh, M.K., & Vinay, S. (2018a). Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. Journal of Environmental Management, 206, 1204-1210. https://doi.org/10.1016/j.jenvman.2017.10.014 DOI: https://doi.org/10.1016/j.jenvman.2017.10.014
  27. Ramachandra, T.V., Sincy, V., Asulabha, K.S., Mahapatra, D.M., Bhat, S.P., & Aithal, B.H. (2018b). Optimal treatment of domestic wastewater through constructed wetlands. Journal of Biodiversity, 9(1-2), 81-102. https://doi.org/10.31901/24566543.2018/09.1-2.077 DOI: https://doi.org/10.31901/24566543.2018/09.1-2.077
  28. Ravikumar, P., Mehmood, M.A., & Somashekar, R.K. (2013). Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India. Applied Water Science, 3(1), 247-261. https://doi.org/10.1007/s13201-013-0077-2 DOI: https://doi.org/10.1007/s13201-013-0077-2
  29. Reddy, K.R., Fisher, M.M., Wang, Y., White, J.R., & James, R.T. (2007). Potential effects of sediment dredging on internal phosphorus loading in a shallow, subtropical lake. Lake and Reservoir Management, 23(1), 27-38. https://doi.org/10.1080/07438140709353907 DOI: https://doi.org/10.1080/07438140709353907
  30. Rosinska, J., Kozak, A., Dondajewska, R., Kowalczewska-Madura, K., & Gołdyn, R. (2018). Water quality response to sustainable restoration measures – Case study of urban Swarzędzkie Lake. Ecological Indicators, 84, 437-449. http://dx.doi.org/10.1016/j.ecolind.2017.09.009 DOI: https://doi.org/10.1016/j.ecolind.2017.09.009
  31. Sheeba, G., Jalagam, A., & Venkatasubramanian, P. (2017). Drinking water contamination from peri-urban Bengaluru, India. Current Science, 113(9), 1702 - 1709. DOI: https://doi.org/10.18520/cs/v113/i09/1702-1709
  32. Sincy, V., Asulabha, K.S., Vinay, S., Vishnu, D.M., Srikanth, N., Subashchandran, M.D., & Ramachandra, T.V. (2016). Ecological status of lotic ecosystem in kans and non-kans of central Western Ghats. Proceedings Lake 2016: Conservation and Sustainable Management of Ecologically Sensitive Regions in Western Ghats, 195-208.
  33. Srivastava, J., Gupta, A. & Chandra, H. Managing water quality with aquatic macrophytes. (2008). Reviews in Environmental Science and Bio/Technology, 7, 255–266. https://doi.org/10.1007/s11157-008-9135-x DOI: https://doi.org/10.1007/s11157-008-9135-x
  34. Van Duin, E.H.S., Frinking, L.J., Van Schaik, F.H., & Boers, P.C.M. (1998). First results of the restoration of Lake Geerplas. Water Science and Technology, 37(3), 185-192. https://doi.org/10.1016/S0273-1223(98)00069-9 DOI: https://doi.org/10.2166/wst.1998.0204
  35. Vinçon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment, 651, 2985-3001. https://doi.org/10.1016/j.scitotenv.2018.09.320 DOI: https://doi.org/10.1016/j.scitotenv.2018.09.320
  36. Wang, W., Liu, X., Wang, Y., Guo, X., & Lu, S. (2016). Analysis of point source pollution and water environmental quality variation trends in the Nansi Lake basin from 2002 to 2012. Environmental Science and Pollution Research, 23(5), 4886-4897. https://doi.org/10.1007/s11356-015-5625-x DOI: https://doi.org/10.1007/s11356-015-5625-x
  37. Watson, S.B., Miller, C., Arhonditsis, G., Boyer, G.L., Carmichael, W., Charlton, M.N., Confesor, R., Depew, D.C., Hook, T.O., Ludsin, S.A., Matisoff, G., Mc Elmurry, S.P., Murray, M.W., Richards, P.R., Rao, Y.R., Steffen, M.M., & Wilhelm, S.W. (2016). The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae, 56, 44-66. https://doi.org/10.1016/j.hal.2016.04.010 DOI: https://doi.org/10.1016/j.hal.2016.04.010
  38. Zhang, S., Zhou, Q., Xu, D., Lin, J., Cheng, S., & Wu, Z. (2010). Effects of sediment dredging on water quality and zooplankton community structure in a shallow eutrophic lake. Journal of Environmental Sciences, 22(2), 218-224. https://doi.org/10.1016/S1001-0742(09)60096-6 DOI: https://doi.org/10.1016/S1001-0742(09)60096-6