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Abstract

Purpose: The study evaluates the performance of alternative variance-covariance estimators as a fundamental ingredient
to portfolio optimization.

Methodology: The study estimates eleven covariance matrices on the data of Pakistan stock exchange's non-financial
sector firms covering the period from July 2006 to June 2020. The accuracy and efficiency of covariance estimators are
assessed through two evaluation parameters: root mean square error and minimum variance portfolios (risk behavior).

Main findings: Empirical findings based on evaluation parameters suggest that more complex covariance estimators in
the equity market of Pakistan yield no additional financial gains than the equally weighted portfolio of estimators.

Application of the study: As the estimation of the variance-covariance matrix is one of the essential elements of
portfolio construction, this study guides investor(s) on selecting an appropriate covariance estimator among eleven
estimators endorsed by literature.

Novelty/ originality of the study: Based on detailed analysis, the study documents that investor(s) of the Pakistan stock
exchange cannot gain any additional benefit from more complex and tricky methods of variance-covariance estimators
compared to a portfolio of estimators for the non-financial sector. Investors are advised to consider the equally weighted
portfolio of estimators when formulating their investment strategy.

Keywords: Variance Covariance Estimators, Portfolio Optimization, RMSE, PSE.
INTRODUCTION

The idea of diversification and portfolio optimization is instrumental in interpreting financial markets and investment
decision-making. In this context, the publication; theory of portfolio selection by Harry Markowitz in 1952 is considered
a significant breakthrough. His theory, commonly known as modern portfolio theory (MPT), provides the answer to a
fundamental question of any investor: How to distribute funds into different investment avenues? By using the statistical
procedure, Markowitz (1952) quantified risk and the return of securities in the form of standard deviation and expected
return, respectively. Markowitz also suggested that any security risk and return should be considered collectively, and
the investment decision should solely be based on risk and return's tradeoff. The groundbreaking work of Markowitz on
mean-variance optimization is greatly valued in the literature of finance. The work of Markowitz is still in practice;
researchers and portfolio managers are actively considering the traditional version for the construction of financial
portfolios (Jagannathan & Ma, 2003; Tu & Zhou, 2011).

The mean-variance by Markowitz (1952) remained under fire at multiple fronts. Michaud (1989) labels the mean-
variance optimization as "enigma". In his view, the Markowitz efficient frontier method of investment diversification
suggests false, irrelevant, and worthless weights for the placement of assets, says the resulting portfolios are
"counterintuitive". Stepping ahead, Michaud (1989) termed the whole framework as an "estimation error maximizer".
Disatnik and Benninga (2007) question the reliability of estimates and argue that this method produces doubtful returns.
Ledoit and Wolf (2003) term estimation of variance-covariance matrix, a tiring part of the method. Best and Grauer
(1991) and Chopra and Ziemba (1993) argue that the method of Markowitz is input centred and raised concern over the
robustness of the optimization strategy. Chow et al. (1995) discard the mean-variance approach and argue that any
investor's utility is not just based on risk and expected return function. Literature is evident that researchers and portfolio
engineers failed to provide a systematic, flawless approach for building an optimized portfolio (Ly, 2019; Zakamulin,
2017). Following the positive side of the mean-variance optimization, other researchers applied the fundamental idea and
enhanced the original Markowitz's optimization model. Konno and Yamazaki (1991) applied the mean absolute
deviation technique for the optimization of the portfolio as a solution to the portfolio problem. Levy and Markowitz
(1979) introduced the application of linear programming, on the same concept Tamiz and Jones (1996) applied goal
programming for portfolio optimization.

The review of the literature regarding portfolio optimization deals with two aspects; theoretical aspect and
implementation aspect. The theoretical aspect discusses the assumption of portfolio optimization and re-evaluates these
assumptions, whereas the implementation aspect deals with two necessary elements required for building and
implementing the portfolio model. From an investor's point of view, there are two fundamental elements as input to
portfolio construction. The first is the estimation of return vectors, and the second is the estimation of the covariance
matrix. This research mainly focuses on estimating the second element required to build a portfolio, using different
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variance-covariance approaches endorsed by literature. The best-suited variance-covariance approach can then be
recommended to the investor of the Pakistan stock exchange for the construction of an optimized portfolio.

The following section of the literature review sheds light on the estimation techniques of variance-covariance matrix
used around the globe for the construction of portfolios.

LITERATURE REVIEW

Financial literature reports numerous efforts of researchers for a reliable solution to the problem of portfolio
optimization. Over time, they proposed a broad range of methods, rules, theories, strategies, and frameworks, etc., to
achieve an optimal solution for the placement of investors' wealth. The below segment of the literature mainly reviews
variance-covariance estimators that serve as an essential component for constructing an optimized portfolio.

The sample variance-covariance matrix procedure depends on historical covariance and estimates pairwise variance-
covariance of the sample asset category. This pairwise covariance estimation is vulnerable to errors, mainly when the
underlying asset groups are larger than the sample asset groups (Hwang et al., 2018; Pafka & Kondor, 2004). Sharpe
(1963) strengthens the sample variance-covariance matrix approach by proposing a more robust covariance method
based on a single market factor. Other researchers also came forward and tried to improve the performance of the sample
covariance technique. Other than a single common factor, King (1966) discusses several others elements. Vasicek (1973)
optimize the covariance estimator's efficiency by using a mean-reverting bias and changing the beta variation,
respectively.

According to Husnain et al. (2016), the typical method for estimating the covariance matrix is susceptible to errors,
maybe due to estimation or specification errors. Non-theory-based or predictive measures, such as principal component
analysis (PCA), have often been used in the literature to identify variables related to sample covariance. For asset
placement, Elton and Gruber (1973) propose the use of average correlation-based variance-covariance estimators. Non-
theory-based or statistic-based diversification measures outperform complex theory-based optimization techniques due
to the volatility of computational estimators and estimation problems (DeMiguel et al., 2007). The decision theory of
statistics directs to an optimized spot between the specification and estimation problem. For optimization between these
two, researchers look to this basic norm of statistics. According to Stein (1956), the optimized spot can be determined by
estimating the weighted average of both estimators. The work on the efficacy of shrinkage-based estimation
and portfolios of estimators using empirical data to estimate the covariance matrix can be attributed to (Bengtsson &
Holst, 2002; Ledoit & Wolf, 2003, 2004).

In contrast to the traditional sample variance-covariance method and the single index variance-covariance approach,
Ledoit and Wolf (2003, 2004) suggest the Bayesian shrinkage strategy of portfolio optimization. In the case of sample
covariance, this approach eliminates issues, including all measurement errors as well as all specification errors.
This method produces a matrix that is smaller than the traditional sample matrix and is called shrunk matrix. All off-
diagonal components (covariances) are shrunk while the diagonal components remain unchanged. Ledoit and Wolf
(2003, 2004) Ledoit and Wolf (2004) successfully shrink traditional sample covariance matrices into the constant
correlation matrix. However, Jagannathan and Ma (2003) criticized and challenged the shrinkage variance-covariance
technique.

As per the review of literature, it is found that a consensus could not be developed among researchers on the use of
covariance estimation methods in the world and in the stock market of developing counties. The current research
undertakes the estimation and evaluation of eleven variance-covariance estimation methods using the Pakistan stock
exchange's non-financial market data. For the evaluation of covariance estimators, the literature linked with portfolio
optimization suggests two evaluation parameters. First, the root mean square error (RMSE) to comment on the
performance of covariance estimator second, is minimum variance portfolio (MVP). The MPV looks at-risk behaviour of
each estimator and guides the efficiency of variance-covariance estimators.

The rest of the article is structured as follows: the third section explains datasets, methods used, and evaluation
parameters of the variance-covariance estimators. The fourth section presents results and interpretations. And, the fifth
section presents major findings and the conclusion of the study.

DATA AND METHODOLOGY

The study sample consists of the share prices of non-financial firms listed at the PSX. The weekly data of equity prices is
collected from the website of the Pakistan stock exchange. A relatively large dataset spanning over 14 years is
considered for analysis, ranging from 01/07/2006 to 30/06/2020. The dataset is further divided into two subsamples from
01/07/2006 to 30/06/2013 and 01/07/2013 to 30/06/2020. The first subsample is used to calculate variance-covariance
estimators, while the second subsample is used to check the ex-post efficiency of the estimators. Indices for 22 sectors of
PSX are formulated based on the equally weighted method.

Under the assumption of continuous compounding, return are calculated for each asset category as: (Riy) =In(Py/Py.1).
Here, In denotes to natural log, P, to recent price, and Py, to the preceding price of asset category. The section below
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provides detail of various approaches to variance-covariance matrices concerning their origin, working structure, and
usefulness.

Detail of variance-covariance estimators

The literature documents the use of alternative approaches of variance-covariance for the construction of portfolios.
Table 1 presents a list of approaches endorsed by literature with their symbols for the construction of portfolios.

The study estimates and evaluates eleven approaches of variance-covariance under four different groups. The approaches
are grouped under four categories: Traditional approaches, Factor Model, portfolio of estimators, and shrinkage
approaches of variance-covariance estimators. Traditional approaches include; the sample variance-covariance model
and the constant correlation variance-covariance model. Factor model contains; the single index method to variance-
covariance. Equally weighted methods of variance-covariance proposed by Ledoit and Wolf (2003) are grouped under
the head of the portfolio of estimators, while the shrinkage approaches of variance-covariance include; shrinkage to
diagonal, shrinkage to single index, and shrinkage to the constant correlation matrix.

Table 1: Variance-covariance estimators with their symbols

Sr. Variance-Covariance Estimators Symbols
Traditional Methods

1 The diagonal var. covariance matrix DC

2 The sample var. covariance model SC

3 The constant correlation var. covariance model CcC
Factor Model

4 The single index var. covariance model Sl
Portfolio of Estimators

5 The portfolio based on sample & diagonal matrix Pl

6 The portfolio based on sample & single index matrix P2

7 The portfolio based on sample & constant correlation covar. matrix P3

8 The portfolio is based on sample, constant corr. & single index matrix P4

9 The portfolio based on the sample, single index & overall mean matrix P5

Shrinkage Approaches

10 The shrinkage aimed at a diagonal point SD
11 The shrinkage aimed at a single index point SSI
12  The shrinkage aimed at a constant correlation point SCC

The diagonal method of variance-covariance is a basic component of variance-covariance matrix estimation. Elton and
Gruber (1973) suggest the use of a sample covariance estimator; this method uses past values; however, it is based on a
flawed system in comparison to other covariance estimators. Likewise, Sharpe (1963) considers a systematic approach
for risk factors and an estimated matrix of covariance. Researchers criticized this approach as it was based on the single
factor of risk and specification fault. Despite the criticism, it proved its worth and performed much better than the
sample covariance method, but this approach had a built-in fault of producing specification errors. Ledoit and Wolf
(2003, 2004) Ledoit and Wolf (2004) propose an optimal shrinkage method. This method shrinks two covariance
matrices toward a target matrix to get one estimator of covariance. Jagannathan and Ma (2003) propose a relatively
simple approach of equally-weighted average. This approach estimates the covariance of two or more covariance
methods using their weighted average.

The variance-covariance matrix estimation

For all categories of involved assets, this square matrix consists of both variance and covariances whose diagonal values
consist of variance for each asset category, whereas its off-diagonal values consist of covariance for possible categories
of asset pairs. To put it another way, variance refers to the squared mean difference while covariance represents the
motion of two asset categories.

The variance-covariance matrix can be expressed mathematically as:
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Where; Y. denotes to the variance-covariance matrix (kxk). j denotes to points of data for each asset category
while i; denotes to average deviation and i? /j denotes to the covariance of asset category of n and m.

The sample variance-covariance matrix

For (s € t™) vector, the sample variance is presented with o2 whereas sample average is presented with Z, then:

1
§=]7*(sl+sz+s3+---+sj)

1 2
Gz=]T*((sl—§)2+(sz—§)2+~--+(sj—§))

Let, Z = [z, + 2z, + 23 + -+ + z,] € P™/, in the preceding expression, every column z, presents a figure in P/. Here,
variance values are captured from the projection of the data using p € P*, such that:

s = (p°y1 + pCyz +pCys + - pCy;) = p°Z € P
Whereas the corresponding mean of sample and variance are:

J
1
%+ (p) = ]—.Z(ple —pC5)?,8 = pCz
=1

In preceding expression, mean of sample for Z = %(y1 +y,+ys+y,+-+y) € P/, whereas in quadratic expression,
the variance with direction p is as under:
1 J
0%+ (p) == ) [0 (e~ DI = p°p
=1

In preceding expression, mean of sample variance-covariance is denoted with X that is presented as under:
2 sampte = % x5 (2—2) (2= 2)° e oo eee oo .Equation 1

The covariance matrix, in the above equation-1, holds the characteristics of symmetrical, positive, and semi-definite. By
the use of the above matrix, the computation of variance can be done in any direction.

The constant correlation covariance matrix (overall mean)

Elton and Gruber (1973) introduced the method of constant correlation to estimate the covariance matrix, backed with
the assumption of variance of return for every asset category is a sample return. In contrast, the covariance of the same
asset category is connected to the same coefficient of correlation. Due to this reason, the mean correlations coefficient is
considered for the entire asset category. estimate covariance matrix using the constant correlation covariance matrix,
claiming that the method performs well compared and is more appropriate than other estimators. Based on the said
assumption, the average correlation coefficient is taken for entire asset categories.

As Osf = (5,050f

So,

. o= 0fifs=f
sf Osf = Q55 0s0fif S * f

The Single index variance-covariance model

......... Equation 2

Sharpe (1963) constructs the single index method, backed by the assumption that returns for an asset category form a
linear function for a market portfolio. It demonstrates that the returns on asset and market portfolios are linearly related.
This linear interaction is significantly positive. Mathematically, this can be expressed as follows:

Ry = ap +bexe + &
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In preceding expression, x; denotes to the market portfolio which is correlated with its error term while E * (g, * &,.) =
0. Where the variance (o2 *(g.,) = 9;.) Within the asset category rests unaltered. Then, the matrix of covariance of
( 0y;,) can be formulated as follows:

oy, = bo? x b%+9

In the preceding equation, b denotes to the estimates of slope for the vector, % denotes to market variance whereas
d denotes to error term for the variance of the matrix. For single index covariance estimator can be written as:

Yisingte index] = PO B+ @ wu e . Equation 3

In the above equation, B denotes to vector slope, o2 denotes to the sample market variance, whereas o denotes to
estimates of the matrix for the error term of the variance.

Portfolio of Estimators

The model of optimal weighted intensity by Ledoit and Wolf (2003) received criticism from Jagannathan and Ma (2003)
later introduced the equally-weighted method of covariance estimation. This suggested framework for the estimation of
variance-covariance was well-received by the community. This study estimates five equal-weighted (EW) portfolios,
similar to the work of Liu and Lin (2010), Disatnik and Benninga (2007), and Jagannathan and Ma (2003).

a. The portfolio based on sample & diagonal matrix:
Equation 4 below presents an equally weighted matrix of the sample and diagonal covariance where off-
diagonal values are zero and variances for asset categories are diagonal items.

1 1 .
) (port—-1) = 2 * 2 ( Sample Matrix ) + 2 * 2 ( Diagonal Matrix ) === == == Equatlon 4
b. The portfolio based on sample & single index matrix:
Equation 5 below is presenting an equally weighted matrix of sample and single index covariance estimator.
1 1 .
) (port-2) = 2 * 2 ( Sample Matrix ) + 2 * 2 (Single Index Matrix ) == === == Equatlon S
c. The portfolio based on sample & constant correlation covariance matrix:
Equation 6 below is presenting the matrix of sample & constant correlation covariance (with overall mean).
1 1 .
) (port-3) = 2 * 2 ( Sample Matrix ) + 2 * X (Overall Mean ) === === == Equatlon 6

d. The portfolio is based on the sample, constant corr. & single index matrix:
Equation 7 below presents a matrix of the sample, single index, and constant correlation covariance (with
overall mean).

1 1 1 .
z (port—4) = 3 * 2 ( Sample Matrix ) + 3 * 2 (Single Index Matrix ) + 3 * X (Overall Mean) ==+ === = Equatlon 7

e. The portfolio based on the sample, single index & overall mean matrix:
Equation 8 below presents the sample matrix, overall mean (mean of constant correlation), single index, and
diagonal covariance estimator.

1 1 1 1
z (port-5) — 2 * 2 ( Sample Matrix ) + 2 * X (Single Index Matrix ) + 2 *X (Ooverall Mean ) + 2 *
2 ( piagonal Matrix) -~ - - EQuUation 8

Shrinkage variance-covariance matrix

Ledoit and Wolf (2003) argue that the sample covariance and single index covariance method are error-prone. Both
methods are greatly criticized in literature owing to their inherent problematic properties. The sample covariance method
has an estimation problem, while the single index covariance matrix has a specification problem. These methods are
inverse of each other as the single index method is the one-factor model, whereas the sample covariance method is the Z-
factor model. Normally, a true estimating model will be an n-factor estimator: s.t. Z>n >1.

Stein (1956) presents the idea that an optimal point can be found using the weighted average for both estimators. This
method guides toward shrinking the sample variance-covariance matrix toward a fixed diagonal target matrix. Chan et al.
(1999), Bengtsson and Holst (2002), Ledoit and Wolf (2004) suggest through empirical evidence the usefulness of
shrinkage estimation with a portfolio of estimators for the calculation of variance-covariance matrix. Jorion (1986)
recommends the shrinkage method as it plays a major role in the portfolio selection process.

Suppose, T and d are sub-models of high and low dimension unrestricted parameters. The corresponding elements can be
obtained using C= 7 and D=0 from data. C denotes to high variance due to its requirement of more fitted parameters
compared to the D as it is hypothetically biased. The estimator can be expressed as follows:

Y=0+*D+ (1—-0)*C......... Equation 9
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In the previous equation, C represents the sample covariance matrix, D denotes to target matrix (highly organized
estimator) whereas @ shows the weight of D, between D and C (in a convex linear fashion). The intensity of shrinkage @
ranges from zero to one.

The decision of the sample matrix and the shrinkage matrix depends on the value @. If the value is 1, there is complete
shrinkage (the obtained matrix is equal to target D); if the value is 0 means no-shrinkage, and thus, it reverts to the
sample matrix. Now, the question arises, should the value @ be fixed or should it be ascertained using minimization of
the following loss function:

R(®) = E(ZP_, (m} — 8;)?) «.e eeo . Equation 10

Ledoit and Wolf (2003) proposed a method to ascertain optimal shrinkage intensity; this method aims at shrinking the
sample variance-covariance matrix to a single index matrix. The basic idea is to minimize mean square error with no
presupposition on distribution. As per the 1 and 2™ moments of C and D, the formula based on squared error loss
function is as follows:

14
R(®) = Z var(m) + [E * (@) — 7,2
i=1
14
=> Z var * (0t; + (1 — @)m,) + [E = (6t; + (1 — O)m;) — 1;]?

i=1

=>

4

P
@% var * (g;) + (1 — 0)%var * (1;) + 20(1 — @)cov * (m;, g;) + [6E(g; — m;) + bias * (m;)]?
=1

After minimization of the above function, w.r.t @;

Z?zl var * (m;) — cov * (mi'gi) — bias x (my)E = (g; — m;)

P =
LE * (g; —m;)?

If L in the preceding equation is an unbiased measure of 7, The above equation can also be expressed in the following
manner:

?zlvar*(mi)—cov*(mirgi)
Ti Ex(gi—my)?

o ==

......... Equation 11

The above equation 11 is used to calculate (@) the optimal shrinkage intensity. Ledoit and Wolf (2004) provide the
formula for the calculation of optimal shrinkage intensity and shrunk sample matrix of covariance to the constant matrix
of correlational covariance. Literature shows that Bengtsson and Holst (2002) and Kwan (2011) shrink the sample
covariance matrix toward S-factor the PCA and a diagonal matrix. Inconsistency with prior literature, this study uses
three types of shrinkage techniques; shrinkage to a diagonal matrix, shrinkage technique to a single index, and shrinkage
technique to constant correlation model.

Evaluation parameters

In line with previous research, this study uses two parameters for the evaluation of the covariance estimator. To check
the pair-to-pair accuracy and ex-post accuracy of covariance estimators dataset is divided into two subsamples. As stated
earlier, the first set of data ranges from 01/07/2006 to 30/06/2013, while the second data ranges from 01/07/2013 to
30/06/2020. For evaluation, two different assessment parameters are considered. The first parameter is the root mean
square error, and the second is the risk character of minimum variance portfolios. In the study, RMSE is estimated as
under:

Q(Q-1) N .
= \[T Yo, X2 B — 02 Equation 12

In the above equation, Q(Q — 1)/2 represents pair-to-pare covariance estimators for an order of Q*Q of the covariance
matrix. The oy, represents to real covariances and the 6y, estimated values of between f and t covariances. A low value
of RMSE is preferred over a low value in the pair-to-pair accuracy of the covariance estimator.

Consistent with the work of Saghir and Tirmizi (2020), Husnain et al. (2016), and Chan et al. (1999) the second
evaluation parameter being applied in the study is the MVP method, which is estimated to see how effective estimators
of covariances are in the selection of MVP. The MVP is later considered for the comparison of the results of estimators.
An MVP is an exclusive portfolio, which basis on the covariance matrix but not on the return of asset category. A study
using the first subsample calculates weights through MVP for every covariance estimator; later, these weights are
considered in the estimation of note of the second subsample (out of sample returns). The series of return estimates for
portfolio guides to the average MVP mean values and for risk behavior (Standard deviation of MVP).
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For MVP, the weight of t risky asset is stated:
Minimum., w? x Xw, s.t. w?e =1
By the use of 4, the Lagrangian Multiplier, the above problem is restructured as follow:
Minimum.,, 0 = w?® x [Zw — 21 * (w¥e — 1)]

D= 2+Zw—22e=0 (Under the rule of 1st order)

™w

Solving for w, we get w = A * (X ~"1e). Assume h as a P*1 vector. We write it as h = 1/ 2 * w, which can be stated as h
= =X "le. As we know, sum of weights equals to 1 (One), then h®e = %* wPe = % So, the weight of any investment
project for MVP is as under:

h
W (mvp) = 1e

RESULTS AND DISCUSSION

The results of RMSE for eleven variance-covariance estimators are presented in Table 2. In accordance with the Liu &
Lin (2010) and Husnain et al. (2016) demonstrations pairwise values of variance-covariance matrices and corresponding
out-of-sample results. A low value of RMSE is said to be better in comparison to other contending covariance
estimators.

.. ... ... EQuation 13

Table 2: RMSE results for variance-covariance estimators

Sr. Variance-Covariance Estimators Values
Traditional Methods

1 The sample var. covariance model (SC) 0.01757

2 The constant correlation var. covariance model (CC) 0.01362
Factor Model

3 Thesingle index var. covariance model (SI) 0.01370
Portfolio of Estimators

4 The portfolio based on sample & diagonal matrix (P1) 0.00879

5 The portfolio based on sample & single index matrix (P2) 0.01411

6 The portfolio based on sample & constant correlation covar. matrix (P3) 0.01257

7 The portfolio based on the sample, constant corr. & single index matrix (P4) 0.01193

8  The portfolio based on sample, single index & overall mean matrix (P5) 0.00895
Shrinkage Approaches

9  The shrinkage aimed at diagonal point (SD) 0.01749

10 The shrinkage aimed at single index point (SSI) 0.01419

11 The shrinkage aimed at constant correlation point (SCC) 0.01040

Table 2 shows that P1, the portfolio based on sample & diagonal matrix estimator outperformed all other competing
variance-covariance estimating methods. Results show that SC, the sample variance-covariance matrix performed worst
among all. The results of P5, P4, P3 under the group of the portfolio of estimators, proposed by Jagannathan and Ma
(2003) performed relatively good compared to the constant correlation var. covariance model (CC) and the single index
variance-covariance model (SI) excluding P2, The portfolio based on sample & single index matrix. Results show that
the single index variance-covariance model (SI) performed slightly better than the portfolio based on the sample &
single index matrix (P2). However, the P2, the portfolio based on sample & single index matrix, performed well
compared to complex shrinkage approaches, i.e., the shrinkage aimed at the single index point (SSI) and the shrinkage
aimed at the diagonal point (SD). Results also reveal that complex shrinkage approaches SSI and SD formulized by
Ledoit & Wolf (2003,2004). Ledoit and Wolf (2004) performed worse than estimators of equally-weighted portfolios;
P1, P5, P4, P3, and P2 respectively, suggested by Jagannathan and Ma (2003), except the shrinkage aimed at constant
correlation point (SCC) which performed relatively better compared to P4, P3, and P2. Findings suggest that use of
relatively tricky methods of variance-covariance estimation yield no extra benefit when evaluated against equally
weighted methods of variance-covariance.

Table 3 presents standard deviation values of eleven variance-covariance for minimum variance portfolios (MVPs).
Results show almost similar findings for both evaluation parameters, i.e., MVPs and RMSE, with some minor
differences for MVPs.

Table 3: Standard deviation (Risk profile) for MVPS for alternative variance-covariances

Sr. Variance-Covariance Estimators Values
Traditional Methods
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1 The sample var. covariance model (SC) 0.02063

2 The constant correlation var. covariance model (CC) 0.02007
Factor Model

3 Thesingle index var. covariance model (SI) 0.01966
Portfolio of Estimators

4  The portfolio based on sample & diagonal matrix (P1) 0.02007

5  The portfolio based on sample & single index matrix (P2) 0.01983

6  The portfolio based on sample & constant correlation covar. matrix (P3)  0.02015

7 The portfolio based on sample, constant corr. & single index matrix (P4) 0.01983

8  The portfolio based on sample, single index & overall mean matrix (P5)  0.01975

Shrinkage Approaches

9  The shrinkage aimed at diagonal point (SD) 0.02063
10 The shrinkage aimed at single index point (SSI) 0.02007
11  The shrinkage aimed at constant correlation point (SCC) 0.01968

In line with preceding RMSE results, the shrinkage aimed at diagonal point (SD) and the sample var. covariance model
(SC) again remain week performers in terms of standard deviation (SD). However, on the scale of standard deviation
(SD), the single index variance-covariance model (SI) outperformed the competing estimators. As per the results of
standard deviation, the portfolio based on sample & diagonal matrix (P1) performed badly in comparison to the RMSE
evaluation parameter. Similar to the results of RMSE, the shrinkage aimed at constant correlation point (SCC) again
performed better on the measure of standard deviation (SD). Results also demonstrate that the other two complex
methods of shrinkage estimators failed to deliver a good performance. Overall, the group of the portfolio of estimators,
P5, P2, P4, and P1 performed well in comparison to the shrinkage aimed at single index point (SSI), the sample
variance-covariance model (SC), and the shrinkage aimed at diagonal point (SD) except the portfolio based on sample &
constant correlation covariance matrix (P3) that did not do well. For comparison on related risk profiles, Table Al
presents results of average values, coherent with RMSE results and minimum variance portfolios (MVPs). Findings
suggest that relatively more technical approaches of variance-covariance estimators provide no additional monetary
advantage over the equally weighted portfolio of estimators.

For comparing different models of variance-covariance estimators, Table 4 presents the Sharpe ratio for resulting
portfolios based on the minimum variance portfolio. Sharpe ratio reports risk-adjusted return using various inputs to
MVP.

Table 4: Sharpe ratios for MVPs for alternative variance-covariance models

Sr. Variance-Covariance Estimators Values
Traditional Methods

1 The sample var. covariance model (SC) 0.07190

2 The constant correlation var. covariance model (CC) 0.05497
Factor Model

3 Thesingle index var. covariance model (SI) 0.07826
Portfolio of Estimators

4 The portfolio based on sample & diagonal matrix (P1) 0.05368

5 The portfolio based on sample & single index matrix (P2) 0.07464

6 The portfolio based on sample & constant correlation covar. matrix (P3) 0.06384

7 The portfolio based on sample, constant corr. & single index matrix (P4) 0.06867

8 The portfolio based on sample, single index & overall mean matrix (P5)  0.06085
Shrinkage Approaches

9 The shrinkage aimed at diagonal point (SD) 0.07165

10 The shrinkage aimed at single index point (SSI) 0.05747

11  The shrinkage aimed at constant correlation point (SCC) 0.07673

In Table 4, results of the Sharpe ratio show that the portfolio based on sample & diagonal matrix (P1) outperformed all
other competing methods of variance-covariance estimators. In contrast, the constant correlation variance-covariance
model (CC) and complex approach to the shrinkage aimed at single index point (SSI) remain on the second and third
best estimators. Results show that the single index var. covariance model (SI) performed worst among all estimators
under the group of the factor model. Results also show that complex shrinkage models proposed by (Ledoit & Wolf
2003, 2004) performed relatively worst in comparison to the equally weighted portfolio of estimators. Additionally,
results also reveal that none of the single variance-covariance methods persistently outperformed the competing
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estimators. Findings confirm that technically advanced covariance methods do not benefit over equally weighted
methods of the portfolio of estimators.

CONCLUSION

We evaluate the performance of eleven variance-covariance estimation methods by constructing four groups; traditional
methods, factor models, equally-weighted portfolio of estimators, and shrinkage variance-covariance approaches in the
presence of weekly data for the companies of the non-financial sector, listed at Pakistan stock exchange (PSX). The
performance of variance-covariance estimators is judged for accuracy and effectiveness through RMSE and MVP two
evaluation parameters.

From empirical results, it is clear that the sample and diagonal matrix's portfolio estimator outperformed all competing
variance-covariance estimators while the sample covariance matrix performed worst as per RMSE parameters. For
covariance estimators, both RMSE and MVP evaluation parameters yield different outcomes. The shrinkage to the
diagonal-matrix technique and sample variance matrix performed poorly on the standard deviation scale, whereas the
single index variance-covariance matrix outperformed all other contending estimators. Sharpe ratio results show that the
sample and diagonal matrix's portfolio outperformed all other estimators, whereas complex shrinkage models of (Ledoit
& Wolf, 2003, 2004) performed worst compared to the group of weighted portfolios. Overall results show that the
equally weighted variance-covariance portfolio of estimators introduced by Jagannathan and Ma (2003) performs
considerably well compared to competing other covariance estimators. In line with previous research by Husnain et al.
(2016), Nguyen (2018), the findings of the current study confirm that investors or asset management companies cannot
receive extra financial gain from the use of more tricky methods of variance-covariance estimation compared to an
equally weighted portfolio of estimators for the non-financial sector in the Pakistani equity market. In contrast to equally
weighted portfolio estimators, investment executives are encouraged to proceed with caution when formulating an
investment strategy incorporating the complex shrinkage variance-covariance approaches.

Future research may explore: a) other investment avenues such as money market instruments, gold futures contracts,
commaodity instruments, real properties such as land, crops, etc., and bond market using variance-covariance estimators
for their effectiveness and accuracy. b) Studies may also use the data of financial sector companies listed at the Pakistan
stock exchange, and c) datasets of other developing counties should also be considered to check the effectiveness of
these estimators.
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APPENDIX

Explanation of average of MVPs

These study analyses covariance estimators through the MPVs. Estimates of sample and out-of-sample results of
performance (returns) are estimated using the MPV weights for different covariance matrices. Table Al presents the
calculated average minimum variance portfolios (MVPSs)

Table Al: Average MVPs of variance-covariance estimators

Sr. Variance-Covariance Estimators Values
Traditional Methods

1 The sample var. covariance model (SC) 0.00185

2 The constant correlation var. covariance model (CC) 0.00137
Factor Model

3 The single index var. covariance model (SI) 0.00193
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Portfolio of Estimators

4 The portfolio based on sample & diagonal matrix (P1) 0.00137
5  The portfolio based on sample & single index matrix (P2) 0.00185
6  The portfolio based on sample & constant correlation covar. matrix (P3)  0.00161
7 The portfolio based on sample, constant corr. & single index matrix (P4) 0.00169
8 The portfolio based on sample, single index & overall mean matrix (P5)  0.00153
Shrinkage Approaches
9 The shrinkage aimed at diagonal point (SD) 0.00185
10 The shrinkage aimed at single index point (SSI) 0.00145
11 The shrinkage aimed at constant correlation point (SCC) 0.00185
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