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Abstract 

Purpose: The study evaluates the performance of alternative variance-covariance estimators as a fundamental ingredient 

to portfolio optimization. 

Methodology: The study estimates eleven covariance matrices on the data of Pakistan stock exchange's non-financial 

sector firms covering the period from July 2006 to June 2020. The accuracy and efficiency of covariance estimators are 

assessed through two evaluation parameters: root mean square error and minimum variance portfolios (risk behavior). 

Main findings: Empirical findings based on evaluation parameters suggest that more complex covariance estimators in 

the equity market of Pakistan yield no additional financial gains than the equally weighted portfolio of estimators. 

Application of the study: As the estimation of the variance-covariance matrix is one of the essential elements of 

portfolio construction, this study guides investor(s) on selecting an appropriate covariance estimator among eleven 

estimators endorsed by literature. 

Novelty/ originality of the study: Based on detailed analysis, the study documents that investor(s) of the Pakistan stock 

exchange cannot gain any additional benefit from more complex and tricky methods of variance-covariance estimators 

compared to a portfolio of estimators for the non-financial sector. Investors are advised to consider the equally weighted 

portfolio of estimators when formulating their investment strategy.  

Keywords: Variance Covariance Estimators, Portfolio Optimization, RMSE, PSE.  

INTRODUCTION 

The idea of diversification and portfolio optimization is instrumental in interpreting financial markets and investment 

decision-making. In this context, the publication; theory of portfolio selection by Harry Markowitz in 1952 is considered 

a significant breakthrough. His theory, commonly known as modern portfolio theory (MPT), provides the answer to a 

fundamental question of any investor: How to distribute funds into different investment avenues? By using the statistical 

procedure, Markowitz (1952) quantified risk and the return of securities in the form of standard deviation and expected 

return, respectively. Markowitz also suggested that any security risk and return should be considered collectively, and 

the investment decision should solely be based on risk and return's tradeoff. The groundbreaking work of Markowitz on 

mean-variance optimization is greatly valued in the literature of finance. The work of Markowitz is still in practice; 

researchers and portfolio managers are actively considering the traditional version for the construction of financial 

portfolios (Jagannathan & Ma, 2003; Tu & Zhou, 2011). 

The mean-variance by Markowitz (1952) remained under fire at multiple fronts. Michaud (1989) labels the mean-

variance optimization as "enigma". In his view, the Markowitz efficient frontier method of investment diversification 

suggests false, irrelevant, and worthless weights for the placement of assets, says the resulting portfolios are 

"counterintuitive". Stepping ahead, Michaud (1989) termed the whole framework as an "estimation error maximizer". 

Disatnik and Benninga (2007) question the reliability of estimates and argue that this method produces doubtful returns. 

Ledoit and Wolf (2003) term estimation of variance-covariance matrix, a tiring part of the method. Best and Grauer 

(1991) and Chopra and Ziemba (1993) argue that the method of Markowitz is input centred and raised concern over the 

robustness of the optimization strategy. Chow et al. (1995) discard the mean-variance approach and argue that any 

investor's utility is not just based on risk and expected return function. Literature is evident that researchers and portfolio 

engineers failed to provide a systematic, flawless approach for building an optimized portfolio (Ly, 2019; Zakamulin, 

2017). Following the positive side of the mean-variance optimization, other researchers applied the fundamental idea and 

enhanced the original Markowitz's optimization model. Konno and Yamazaki (1991) applied the mean absolute 

deviation technique for the optimization of the portfolio as a solution to the portfolio problem. Levy and Markowitz 

(1979) introduced the application of linear programming, on the same concept Tamiz and Jones (1996) applied goal 

programming for portfolio optimization. 

The review of the literature regarding portfolio optimization deals with two aspects; theoretical aspect and 

implementation aspect. The theoretical aspect discusses the assumption of portfolio optimization and re-evaluates these 

assumptions, whereas the implementation aspect deals with two necessary elements required for building and 

implementing the portfolio model. From an investor's point of view, there are two fundamental elements as input to 

portfolio construction. The first is the estimation of return vectors, and the second is the estimation of the covariance 

matrix. This research mainly focuses on estimating the second element required to build a portfolio, using different 
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variance-covariance approaches endorsed by literature. The best-suited variance-covariance approach can then be 

recommended to the investor of the Pakistan stock exchange for the construction of an optimized portfolio. 

The following section of the literature review sheds light on the estimation techniques of variance-covariance matrix 

used around the globe for the construction of portfolios.  

LITERATURE REVIEW 

Financial literature reports numerous efforts of researchers for a reliable solution to the problem of portfolio 

optimization. Over time, they proposed a broad range of methods, rules, theories, strategies, and frameworks, etc., to 

achieve an optimal solution for the placement of investors' wealth. The below segment of the literature mainly reviews 

variance-covariance estimators that serve as an essential component for constructing an optimized portfolio.  

The sample variance-covariance matrix procedure depends on historical covariance and estimates pairwise variance-

covariance of the sample asset category. This pairwise covariance estimation is vulnerable to errors, mainly when the 

underlying asset groups are larger than the sample asset groups (Hwang et al., 2018; Pafka & Kondor, 2004). Sharpe 

(1963) strengthens the sample variance-covariance matrix approach by proposing a more robust covariance method 

based on a single market factor. Other researchers also came forward and tried to improve the performance of the sample 

covariance technique. Other than a single common factor, King (1966) discusses several others elements. Vasicek (1973) 

optimize the covariance estimator's efficiency by using a mean-reverting bias and changing the beta variation, 

respectively.  

According to Husnain et al. (2016), the typical method for estimating the covariance matrix is susceptible to errors, 

maybe due to estimation or specification errors. Non-theory-based or predictive measures, such as principal component 

analysis (PCA), have often been used in the literature to identify variables related to sample covariance. For asset 

placement, Elton and Gruber (1973) propose the use of average correlation-based variance-covariance estimators. Non-

theory-based or statistic-based diversification measures outperform complex theory-based optimization techniques due 

to the volatility of computational estimators and estimation problems (DeMiguel et al., 2007). The decision theory of 

statistics directs to an optimized spot between the specification and estimation problem. For optimization between these 

two, researchers look to this basic norm of statistics. According to Stein (1956), the optimized spot can be determined by 

estimating the weighted average of both estimators. The work on the efficacy of shrinkage-based estimation 

and portfolios of estimators using empirical data to estimate the covariance matrix can be attributed to (Bengtsson & 

Holst, 2002; Ledoit & Wolf, 2003, 2004).  

In contrast to the traditional sample variance-covariance method and the single index variance-covariance approach, 

Ledoit and Wolf (2003, 2004) suggest the Bayesian shrinkage strategy of portfolio optimization. In the case of sample 

covariance, this approach eliminates issues, including all measurement errors as well as all specification errors. 

This method produces a matrix that is smaller than the traditional sample matrix and is called shrunk matrix. All off-

diagonal components (covariances) are shrunk while the diagonal components remain unchanged. Ledoit and Wolf 

(2003, 2004) Ledoit and Wolf (2004) successfully shrink traditional sample covariance matrices into the constant 

correlation matrix. However, Jagannathan and Ma (2003) criticized and challenged the shrinkage variance-covariance 

technique.  

As per the review of literature, it is found that a consensus could not be developed among researchers on the use of 

covariance estimation methods in the world and in the stock market of developing counties. The current research 

undertakes the estimation and evaluation of eleven variance-covariance estimation methods using the Pakistan stock 

exchange's non-financial market data. For the evaluation of covariance estimators, the literature linked with portfolio 

optimization suggests two evaluation parameters. First, the root mean square error (RMSE) to comment on the 

performance of covariance estimator second, is minimum variance portfolio (MVP). The MPV looks at-risk behaviour of 

each estimator and guides the efficiency of variance-covariance estimators.  

The rest of the article is structured as follows: the third section explains datasets, methods used, and evaluation 

parameters of the variance-covariance estimators. The fourth section presents results and interpretations. And, the fifth 

section presents major findings and the conclusion of the study. 

DATA AND METHODOLOGY 

The study sample consists of the share prices of non-financial firms listed at the PSX. The weekly data of equity prices is 

collected from the website of the Pakistan stock exchange. A relatively large dataset spanning over 14 years is 

considered for analysis, ranging from 01/07/2006 to 30/06/2020. The dataset is further divided into two subsamples from 

01/07/2006 to 30/06/2013 and 01/07/2013 to 30/06/2020. The first subsample is used to calculate variance-covariance 

estimators, while the second subsample is used to check the ex-post efficiency of the estimators. Indices for 22 sectors of 

PSX are formulated based on the equally weighted method.  

Under the assumption of continuous compounding, return are calculated for each asset category as: (Ri,t) =ln(Pt/Pt-1). 

Here, ln denotes to natural log, Pt to recent price, and Pt-1 to the preceding price of asset category. The section below 
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provides detail of various approaches to variance-covariance matrices concerning their origin, working structure, and 

usefulness. 

Detail of variance-covariance estimators 

The literature documents the use of alternative approaches of variance-covariance for the construction of portfolios. 

Table 1 presents a list of approaches endorsed by literature with their symbols for the construction of portfolios. 

The study estimates and evaluates eleven approaches of variance-covariance under four different groups. The approaches 

are grouped under four categories: Traditional approaches, Factor Model, portfolio of estimators, and shrinkage 

approaches of variance-covariance estimators. Traditional approaches include; the sample variance-covariance model 

and the constant correlation variance-covariance model. Factor model contains; the single index method to variance-

covariance. Equally weighted methods of variance-covariance proposed by Ledoit and Wolf (2003) are grouped under 

the head of the portfolio of estimators, while the shrinkage approaches of variance-covariance include; shrinkage to 

diagonal, shrinkage to single index, and shrinkage to the constant correlation matrix. 

Table 1: Variance-covariance estimators with their symbols 

Sr. Variance-Covariance Estimators Symbols 

 Traditional Methods  

1 The diagonal var. covariance matrix DC 

2 The sample var. covariance model SC 

3 The constant correlation var. covariance model CC 

 Factor Model  

4 The single index var. covariance model SI 

 Portfolio of Estimators  

5 The portfolio based on sample & diagonal matrix P1 

6 The portfolio based on sample & single index matrix P2 

7 The portfolio based on sample & constant correlation covar. matrix P3 

8 The portfolio is based on sample, constant corr. & single index matrix P4 

9 The portfolio based on the sample, single index & overall mean matrix P5 

 Shrinkage Approaches  

10 The shrinkage aimed at a diagonal point SD 

11 The shrinkage aimed at a single index point SSI 

12 The shrinkage aimed at a constant correlation point SCC 

The diagonal method of variance-covariance is a basic component of variance-covariance matrix estimation. Elton and 

Gruber (1973) suggest the use of a sample covariance estimator; this method uses past values; however, it is based on a 

flawed system in comparison to other covariance estimators. Likewise, Sharpe (1963) considers a systematic approach 

for risk factors and an estimated matrix of covariance. Researchers criticized this approach as it was based on the single 

factor of risk and specification fault. Despite the criticism, it proved its worth and performed much better than the 

sample covariance method, but this approach had a built-in fault of producing specification errors. Ledoit and Wolf 

(2003, 2004) Ledoit and Wolf (2004)  propose an optimal shrinkage method. This method shrinks two covariance 

matrices toward a target matrix to get one estimator of covariance. Jagannathan and Ma (2003) propose a relatively 

simple approach of equally-weighted average. This approach estimates the covariance of two or more covariance 

methods using their weighted average.  

The variance-covariance matrix estimation 

For all categories of involved assets, this square matrix consists of both variance and covariances whose diagonal values 

consist of variance for each asset category, whereas its off-diagonal values consist of covariance for possible categories 

of asset pairs. To put it another way, variance refers to the squared mean difference while covariance represents the 

motion of two asset categories.  

 

 

 

 

The variance-covariance matrix can be expressed mathematically as:  
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Where;   denotes to the variance-covariance matrix (k×k). j denotes to points of data for each asset category 

while    denotes to average deviation and   
    denotes to the covariance of asset category of n and m. 

The sample variance-covariance matrix  

For (    ) vector, the sample variance is presented with    whereas sample average is presented with   , then:  

   
 

 
                 

   
 

 
                             

 
   

Let,                        , in the preceding expression, every column    presents a figure in   . Here, 

variance values are captured from the projection of the data using     , such that: 

                                

Whereas the corresponding mean of sample and variance are: 

       
 

 
             

 

   

         

In preceding expression, mean of sample for    
 

 
                     , whereas in quadratic expression, 

the variance with direction   is as under: 

       
 

 
             

 

   

      

In preceding expression, mean of sample variance-covariance is denoted with   that is presented as under: 

          
 

 
      

                          Equation 1 

The covariance matrix, in the above equation-1, holds the characteristics of symmetrical, positive, and semi-definite. By 

the use of the above matrix, the computation of variance can be done in any direction. 

The constant correlation covariance matrix (overall mean) 

Elton and Gruber (1973) introduced the method of constant correlation to estimate the covariance matrix, backed with 

the assumption of variance of return for every asset category is a sample return. In contrast, the covariance of the same 

asset category is connected to the same coefficient of correlation. Due to this reason, the mean correlations coefficient is 

considered for the entire asset category.  estimate covariance matrix using the constant correlation covariance matrix, 

claiming that the method performs well compared and is more appropriate than other estimators. Based on the said 

assumption, the average correlation coefficient is taken for entire asset categories.  

As              

So, 

    
       

        

                    
     Equation 2 

The Single index variance-covariance model 

Sharpe (1963) constructs the single index method, backed by the assumption that returns for an asset category form a 

linear function for a market portfolio. It demonstrates that the returns on asset and market portfolios are linearly related. 

This linear interaction is significantly positive. Mathematically, this can be expressed as follows: 
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In preceding expression,    denotes to the market portfolio which is correlated with its error term while             
 . Where the variance (   *(           within the asset category rests unaltered. Then, the matrix of covariance of 

       can be formulated as follows: 

           +  

In the preceding equation, b denotes to the estimates of slope for the vector,    denotes to market variance whereas 

  denotes to error term for the variance of the matrix. For single index covariance estimator can be written as: 

                             Equation 3 

In the above equation,   denotes to vector slope,    denotes to the sample market variance, whereas   denotes to 

estimates of the matrix for the error term of the variance. 

Portfolio of Estimators  

The model of optimal weighted intensity by Ledoit and Wolf (2003) received criticism from Jagannathan and Ma (2003) 

later introduced the equally-weighted method of covariance estimation. This suggested framework for the estimation of 

variance-covariance was well-received by the community. This study estimates five equal-weighted (EW) portfolios, 

similar to the work of Liu and Lin (2010), Disatnik and Benninga (2007), and Jagannathan and Ma (2003). 

a. The portfolio based on sample & diagonal matrix:  

Equation 4 below presents an equally weighted matrix of the sample and diagonal covariance where off-

diagonal values are zero and variances for asset categories are diagonal items. 

             
 

 
                     

 

 
                          Equation 4 

b. The portfolio based on sample & single index matrix: 

Equation 5 below is presenting an equally weighted matrix of sample and single index covariance estimator.  

           
 

 
                     

 

 
                              Equation 5 

c. The portfolio based on sample & constant correlation covariance matrix: 

Equation 6 below is presenting the matrix of sample & constant correlation covariance (with overall mean). 

           
 

 
                     

 

 
                       Equation 6 

d. The portfolio is based on the sample, constant corr. & single index matrix: 

Equation 7 below presents a matrix of the sample, single index, and constant correlation covariance (with 

overall mean). 

           
 

 
                     

 

 
                           

 

 
                      Equation 7 

e. The portfolio based on the sample, single index & overall mean matrix: 

Equation 8 below presents the sample matrix, overall mean (mean of constant correlation), single index, and 

diagonal covariance estimator.  

           
 

 
                     

 

 
                           

 

 
                    

 

 
 

                         Equation 8 

Shrinkage variance-covariance matrix  

Ledoit and Wolf (2003) argue that the sample covariance and single index covariance method are error-prone. Both 

methods are greatly criticized in literature owing to their inherent problematic properties. The sample covariance method 

has an estimation problem, while the single index covariance matrix has a specification problem. These methods are 

inverse of each other as the single index method is the one-factor model, whereas the sample covariance method is the Z-

factor model. Normally, a true estimating model will be an n-factor estimator: s.t. Z > n >1.  

Stein (1956) presents the idea that an optimal point can be found using the weighted average for both estimators. This 

method guides toward shrinking the sample variance-covariance matrix toward a fixed diagonal target matrix. Chan et al. 

(1999), Bengtsson and Holst (2002), Ledoit and Wolf (2004)  suggest through empirical evidence the usefulness of 

shrinkage estimation with a portfolio of estimators for the calculation of variance-covariance matrix. Jorion (1986) 

recommends the shrinkage method as it plays a major role in the portfolio selection process. 

Suppose,   and   are sub-models of high and low dimension unrestricted parameters. The corresponding elements can be 

obtained using C=    and D=   from data. C denotes to high variance due to its requirement of more fitted parameters 

compared to the D as it is hypothetically biased. The estimator can be expressed as follows: 

                  Equation 9 
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In the previous equation, C represents the sample covariance matrix, D denotes to target matrix (highly organized 

estimator) whereas   shows the weight of D, between D and C (in a convex linear fashion). The intensity of shrinkage   

ranges from zero to one.  

The decision of the sample matrix and the shrinkage matrix depends on the value  . If the value is 1, there is complete 

shrinkage (the obtained matrix is equal to target D); if the value is 0 means no-shrinkage, and thus, it reverts to the 

sample matrix. Now, the question arises, should the value   be fixed or should it be ascertained using minimization of 

the following loss function:  

           
    

     
      Equation 10 

Ledoit and Wolf (2003) proposed a method to ascertain optimal shrinkage intensity; this method aims at shrinking the 

sample variance-covariance matrix to a single index matrix. The basic idea is to minimize mean square error with no 

presupposition on distribution. As per the 1
st
 and 2

nd 
moments of C and D, the formula based on squared error loss 

function is as follows: 

       

 

   

     
         

      
  

    

 

   

                                     
  

     

 

   

                                                                
  

After minimization of the above function, w.r.t  ; 

   
  

 
                                         

  
 
           

 
 

If L in the preceding equation is an unbiased measure of  , The above equation can also be expressed in the following 

manner: 

   
    
 

                    

    
 

         
     Equation 11 

The above equation 11 is used to calculate ( ) the optimal shrinkage intensity. Ledoit and Wolf (2004) provide the 

formula for the calculation of optimal shrinkage intensity and shrunk sample matrix of covariance to the constant matrix 

of correlational covariance. Literature shows that Bengtsson and Holst (2002) and Kwan (2011) shrink the sample 

covariance matrix toward S-factor the PCA and a diagonal matrix. Inconsistency with prior literature, this study uses 

three types of shrinkage techniques; shrinkage to a diagonal matrix, shrinkage technique to a single index, and shrinkage 

technique to constant correlation model. 

Evaluation parameters 

In line with previous research, this study uses two parameters for the evaluation of the covariance estimator. To check 

the pair-to-pair accuracy and ex-post accuracy of covariance estimators dataset is divided into two subsamples. As stated 

earlier, the first set of data ranges from 01/07/2006 to 30/06/2013, while the second data ranges from 01/07/2013 to 

30/06/2020. For evaluation, two different assessment parameters are considered. The first parameter is the root mean 

square error, and the second is the risk character of minimum variance portfolios. In the study, RMSE is estimated as 

under: 

  
      

 
              

  
       

 
   

   Equation 12 

In the above equation,          represents pair-to-pare covariance estimators for an order of Q*Q of the covariance 

matrix. The     represents to real covariances and the      estimated values of between f and t covariances. A low value 

of RMSE is preferred over a low value in the pair-to-pair accuracy of the covariance estimator. 

Consistent with the work of Saghir and Tirmizi (2020), Husnain et al. (2016), and Chan et al. (1999) the second 

evaluation parameter being applied in the study is the MVP method, which is estimated to see how effective estimators 

of covariances are in the selection of MVP. The MVP is later considered for the comparison of the results of estimators.  

An MVP is an exclusive portfolio, which basis on the covariance matrix but not on the return of asset category. A study 

using the first subsample calculates weights through MVP for every covariance estimator; later, these weights are 

considered in the estimation of note of the second subsample (out of sample returns). The series of return estimates for 

portfolio guides to the average MVP mean values and for risk behavior (Standard deviation of MVP). 
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For MVP, the weight of t risky asset is stated: 

              ,            

By the use of  , the Lagrangian Multiplier, the above problem is restructured as follow: 

                                

  

  
                  (Under the rule of 1st order)  

Solving for w, we get            . Assume h as a P*1 vector. We write it as h = 1/    , which can be stated as h 

= =     . As we know, sum of weights equals to 1 (One), then     
 

 
     

 

 
. So, the weight of any investment 

project for MVP is as under: 

        
 

   
     Equation 13 

RESULTS AND DISCUSSION 

The results of RMSE for eleven variance-covariance estimators are presented in Table 2. In accordance with the Liu & 

Lin (2010) and Husnain et al. (2016) demonstrations pairwise values of variance-covariance matrices and corresponding 

out-of-sample results. A low value of RMSE is said to be better in comparison to other contending covariance 

estimators. 

Table 2: RMSE results for variance-covariance estimators 

Sr. Variance-Covariance Estimators  Values 

 Traditional Methods  

1 The sample var. covariance model (SC) 0.01757 

2 The constant correlation var. covariance model (CC) 0.01362 

 Factor Model  

3 The single index var. covariance model (SI) 0.01370 

 Portfolio of Estimators  

4 The portfolio based on sample & diagonal matrix (P1)  0.00879 

5 The portfolio based on sample & single index matrix (P2) 0.01411 

6 The portfolio based on sample & constant correlation covar. matrix (P3)  0.01257 

7 The portfolio based on the sample, constant corr. & single index matrix (P4) 0.01193 

8 The portfolio based on sample, single index & overall mean matrix (P5) 0.00895 

 Shrinkage Approaches  

9 The shrinkage aimed at diagonal point (SD) 0.01749 

10 The shrinkage aimed at single index point (SSI) 0.01419 

11 The shrinkage aimed at constant correlation point (SCC) 0.01040 

Table 2 shows that P1, the portfolio based on sample & diagonal matrix estimator outperformed all other competing 

variance-covariance estimating methods. Results show that SC, the sample variance-covariance matrix performed worst 

among all. The results of P5, P4, P3 under the group of the portfolio of estimators, proposed by Jagannathan and Ma 

(2003) performed relatively good compared to the constant correlation var. covariance model (CC) and the single index 

variance-covariance model (SI) excluding P2, The portfolio based on sample & single index matrix. Results show that 

the single index variance-covariance model (SI) performed slightly better than the portfolio based on the sample & 

single index matrix (P2). However, the P2, the portfolio based on sample & single index matrix, performed well 

compared to complex shrinkage approaches, i.e., the shrinkage aimed at the single index point (SSI) and the shrinkage 

aimed at the diagonal point (SD). Results also reveal that complex shrinkage approaches SSI and SD formulized by 

Ledoit & Wolf (2003,2004). Ledoit and Wolf (2004) performed worse than estimators of equally-weighted portfolios; 

P1, P5, P4, P3, and P2 respectively, suggested by Jagannathan and Ma (2003), except the shrinkage aimed at constant 

correlation point (SCC) which performed relatively better compared to P4, P3, and P2. Findings suggest that use of 

relatively tricky methods of variance-covariance estimation yield no extra benefit when evaluated against equally 

weighted methods of variance-covariance.  

Table 3 presents standard deviation values of eleven variance-covariance for minimum variance portfolios (MVPs). 

Results show almost similar findings for both evaluation parameters, i.e., MVPs and RMSE, with some minor 

differences for MVPs.  

Table 3: Standard deviation (Risk profile) for MVPS for alternative variance-covariances 

Sr. Variance-Covariance Estimators  Values 

 Traditional Methods  
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1 The sample var. covariance model (SC) 0.02063 

2 The constant correlation var. covariance model (CC) 0.02007 

 Factor Model  

3 The single index var. covariance model (SI) 0.01966 

 Portfolio of Estimators  

4 The portfolio based on sample & diagonal matrix (P1)  0.02007 

5 The portfolio based on sample & single index matrix (P2) 0.01983 

6 The portfolio based on sample & constant correlation covar. matrix (P3)  0.02015 

7 The portfolio based on sample, constant corr. & single index matrix (P4) 0.01983 

8 The portfolio based on sample, single index & overall mean matrix (P5) 0.01975 

 Shrinkage Approaches  

9 The shrinkage aimed at diagonal point (SD) 0.02063 

10 The shrinkage aimed at single index point (SSI) 0.02007 

11 The shrinkage aimed at constant correlation point (SCC) 0.01968 

In line with preceding RMSE results, the shrinkage aimed at diagonal point (SD) and the sample var. covariance model 

(SC) again remain week performers in terms of standard deviation (SD). However, on the scale of standard deviation 

(SD), the single index variance-covariance model (SI) outperformed the competing estimators. As per the results of 

standard deviation, the portfolio based on sample & diagonal matrix (P1) performed badly in comparison to the RMSE 

evaluation parameter. Similar to the results of RMSE, the shrinkage aimed at constant correlation point (SCC) again 

performed better on the measure of standard deviation (SD). Results also demonstrate that the other two complex 

methods of shrinkage estimators failed to deliver a good performance. Overall, the group of the portfolio of estimators, 

P5, P2, P4, and P1 performed well in comparison to the shrinkage aimed at single index point (SSI), the sample 

variance-covariance model (SC), and the shrinkage aimed at diagonal point (SD) except the portfolio based on sample & 

constant correlation covariance matrix (P3) that did not do well. For comparison on related risk profiles, Table A1 

presents results of average values, coherent with RMSE results and minimum variance portfolios (MVPs). Findings 

suggest that relatively more technical approaches of variance-covariance estimators provide no additional monetary 

advantage over the equally weighted portfolio of estimators.  

For comparing different models of variance-covariance estimators, Table 4 presents the Sharpe ratio for resulting 

portfolios based on the minimum variance portfolio. Sharpe ratio reports risk-adjusted return using various inputs to 

MVP.  

Table 4: Sharpe ratios for MVPs for alternative variance-covariance models 

Sr. Variance-Covariance Estimators  Values 

 Traditional Methods  

1 The sample var. covariance model (SC) 0.07190 

2 The constant correlation var. covariance model (CC) 0.05497 

 Factor Model  

3 The single index var. covariance model (SI) 0.07826 

 Portfolio of Estimators  

4 The portfolio based on sample & diagonal matrix (P1)  0.05368 

5 The portfolio based on sample & single index matrix (P2) 0.07464 

6 The portfolio based on sample & constant correlation covar. matrix (P3) 0.06384 

7 The portfolio based on sample, constant corr. & single index matrix (P4) 0.06867 

8 The portfolio based on sample, single index & overall mean matrix (P5) 0.06085 

 Shrinkage Approaches  

9 The shrinkage aimed at diagonal point (SD) 0.07165 

10 The shrinkage aimed at single index point (SSI) 0.05747 

11 The shrinkage aimed at constant correlation point (SCC) 0.07673 

In Table 4, results of the Sharpe ratio show that the portfolio based on sample & diagonal matrix (P1) outperformed all 

other competing methods of variance-covariance estimators. In contrast, the constant correlation variance-covariance 

model (CC) and complex approach to the shrinkage aimed at single index point (SSI) remain on the second and third 

best estimators. Results show that the single index var. covariance model (SI) performed worst among all estimators 

under the group of the factor model. Results also show that complex shrinkage models proposed by (Ledoit & Wolf, 

2003, 2004) performed relatively worst in comparison to the equally weighted portfolio of estimators. Additionally, 

results also reveal that none of the single variance-covariance methods persistently outperformed the competing 
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estimators. Findings confirm that technically advanced covariance methods do not benefit over equally weighted 

methods of the portfolio of estimators.  

CONCLUSION 

We evaluate the performance of eleven variance-covariance estimation methods by constructing four groups; traditional 

methods, factor models, equally-weighted portfolio of estimators, and shrinkage variance-covariance approaches in the 

presence of weekly data for the companies of the non-financial sector, listed at Pakistan stock exchange (PSX). The 

performance of variance-covariance estimators is judged for accuracy and effectiveness through RMSE and MVP two 

evaluation parameters.  

From empirical results, it is clear that the sample and diagonal matrix's portfolio estimator outperformed all competing 

variance-covariance estimators while the sample covariance matrix performed worst as per RMSE parameters. For 

covariance estimators, both RMSE and MVP evaluation parameters yield different outcomes. The shrinkage to the 

diagonal-matrix technique and sample variance matrix performed poorly on the standard deviation scale, whereas the 

single index variance-covariance matrix outperformed all other contending estimators. Sharpe ratio results show that the 

sample and diagonal matrix's portfolio outperformed all other estimators, whereas complex shrinkage models of (Ledoit 

& Wolf, 2003, 2004) performed worst compared to the group of weighted portfolios. Overall results show that the 

equally weighted variance-covariance portfolio of estimators introduced by Jagannathan and Ma (2003) performs 

considerably well compared to competing other covariance estimators. In line with previous research by Husnain et al. 

(2016), Nguyen (2018), the findings of the current study confirm that investors or asset management companies cannot 

receive extra financial gain from the use of more tricky methods of variance-covariance estimation compared to an 

equally weighted portfolio of estimators for the non-financial sector in the Pakistani equity market. In contrast to equally 

weighted portfolio estimators, investment executives are encouraged to proceed with caution when formulating an 

investment strategy incorporating the complex shrinkage variance-covariance approaches.  

Future research may explore: a) other investment avenues such as money market instruments, gold futures contracts, 

commodity instruments, real properties such as land, crops, etc., and bond market using variance-covariance estimators 

for their effectiveness and accuracy. b) Studies may also use the data of financial sector companies listed at the Pakistan 

stock exchange, and c) datasets of other developing counties should also be considered to check the effectiveness of 

these estimators.  
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APPENDIX 

Explanation of average of MVPs 

These study analyses covariance estimators through the MPVs. Estimates of sample and out-of-sample results of 

performance (returns) are estimated using the MPV weights for different covariance matrices. Table A1 presents the 

calculated average minimum variance portfolios (MVPs) 

Table A1: Average MVPs of variance-covariance estimators 

Sr. Variance-Covariance Estimators  Values 

 Traditional Methods  

1 The sample var. covariance model (SC) 0.00185 

2 The constant correlation var. covariance model (CC) 0.00137 

 Factor Model  

3 The single index var. covariance model (SI) 0.00193 
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 Portfolio of Estimators  

4 The portfolio based on sample & diagonal matrix (P1)  0.00137 

5 The portfolio based on sample & single index matrix (P2) 0.00185 

6 The portfolio based on sample & constant correlation covar. matrix (P3)  0.00161 

7 The portfolio based on sample, constant corr. & single index matrix (P4) 0.00169 

8 The portfolio based on sample, single index & overall mean matrix (P5) 0.00153 

 Shrinkage Approaches  

9 The shrinkage aimed at diagonal point (SD) 0.00185 

10 The shrinkage aimed at single index point (SSI) 0.00145 

11 The shrinkage aimed at constant correlation point (SCC) 0.00185 

 


