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Abstract. Non Linear Programming Problems (NLPP) are tedious to solve as compared to Linear Programming 

Problem (LPP).  The present paper is an attempt to analyze the impact of penalty constant over the penalty function, 

which is used to solve the NLPP with inequality constraint(s). The improved version of famous meta heuristic 

Particle Swarm Optimization (PSO) is used for this purpose. The scilab programming language is used for 

computational purpose. The impact of penalty constant is studied by considering five test problems. Different values 

of penalty constant are taken to prepare the unconstraint NLPP from the given constraint NLPP with inequality 

constraint. These different unconstraint NLPP is then solved by improved PSO, and the superior one is noted. It has 

been shown that, In all the five cases, the superior one is due to the higher penalty constant. The computational 

results for performance are shown in the respective sections. 

Keywords.  Non-Linear Programming Problem, Penalty Method, Particle Swarm Optimization, Equality and 

Inequality Constraints. 

 

INTRODUCTION 

Non Linear Programming Problems are of two types, without constraints and with constraints. The NLPP without 

constraints could be modeled with several available methods like steepest descent, newton‟s method etc [1]. They 

are consuming comparatively less time as compared to the NLPP with constrains. The NLPP with constraint, on the 

other hand are modeled by various available methods like KKT conditions, Lagrangian multiplier, penalty method, 

barrier method etc [2, 3]. Almost all the various techniques available for NLPP with constrains are using one unique 

process: to convert NLPP with constraints to NLPP without constraints by imposing some constant, which we find 

during the further investigation directed in algorithm. After converting, these could be modeled by applying 

algorithms available for NLPP without constraints like steepest descent, newton‟s method etc. 

There are some heuristic algorithm also, which could deal the NLPP without constrains. Particle Swarm 

Optimization is one of them. This meta heuristic was given by Kenndy and Eberheart in 1995 [4]. Till then, a lot of 

improvements over this has been made in a number of papers [5, 6]. A meta heuristic is an empirical strategy to find 

the solution in an alternate way. PSO works in a similar manner. The brief idea of PSO will be stated in the next 

section. We have used an improved version of this meta heuristic in the present paper to deal with the NLPP without 

constrains.  

The NLPP with constraints are converted to NLPP without constraint by using penalty method. A penalty constant is 

needed for this purpose. Two different penalty constants are used for this purpose.  Then, we apply improved PSO 

over both unconstrained NLPP to find the optimal solution. SCILAB programming language is used for the 

computational work involved. It has been shown that the higher penalty constant results sharper results. It is due to 

the higher convexity of the converted unconstrained NLPP. 
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The computational time taken by the improved PSO in this paper is lesser comparatively because we are generating 

only one random number in each iteration. The other random number is taken in such a way that the sums of these 

two are always one [7]. This also results a benefit on overall number of iterations, because we do not stuck with 

global or local impact only for the next iteration. Some more conventional improvements in PSO are also taken, 

which is discussed in the next section. 

The PSO with penalty method is discussed in several papers [8]. We have compared our computational work with a 

similar work in [9], which is using 100 particles and 1000 iterations for an accuracy varying in order of 10-2 to10-3 i. 

e. the difference between the optimal function values and obtained values are varying between 10-2 and 10-3 for most 

of the problems.  We have found the better accuracy (approximately in 10-3) by taking 50 particles and 800 

iterations. This is due to two main factors:  i) higher penalty constant used for making more convex region and lesser 

search area,  ii) taking improved version of PSO algorithm. 

We apply the methods over the inequality constrained problems only. We intentionally took two variable problems 

as benchmark problems just because we could visualize the solution in 3D space. Also, the solution could be easily 

compared with the manual solution. 

PARTICLE SWARM OPTIMIZATION 

This section introduces briefly about PSO. The optimization algorithm PSO is, in general inspired by nature. Just for 

example, a flock of birds searches food on a given area, and as soon as some bird reaches to the food, it informs 

other. In this way, the search space got smaller and all the birds are accumulated on a particular area. The meta 

heuristic PSO works on similar grounds. We first generate the given set of solutions randomly, called the initial 

solution. The initial solutions differ from each others in “fitness”. A solution may have a highest fitness, while the 

others may have lesser. The term highest fitness corresponds to the best solution obtained. Every other solution in 

the solution set must follow this best solution in a random way. 

The best value of any particle achieved is called global best solution or „gbest‟. Each solution in the solution set is 

associated with a value, which is variable. These are called „pbest‟. At the initialization, gbest is the best position 

while pbest are particle‟s own position. In any iteraton, each particle is forced to move towards the best solution 

keeping track of also its own best position. The equation for movement of particle is given by:  
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Where 
k

idv denotes the velocity of i th particle at k th iteration. 
1

kr and 
2

kr are the two random numbers generated 

for each particle at the k th iteration. 
k

idpbest  is the particle‟s own best position in ith iteration. 
k

idgbest  is the 

best position obtained so far upto ith iteration. That means a particle is subjected to a velocity influenced by gbest 

and its own best position respectively. This velocity is also affected by two random numbers such that it may 

explore new position which is closer to its own best position pbest and global best solution gbest. The velocity 

obtained is added to its previous position for getting the new position. 
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         … (2)

 

The above processes explore and drift each particle towards the optimal solution. The process is stopped either when 

the desired accuracy is obtained or a specific number of iterations are completed. 
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IMPROVEMENT IN PSO 

i) Inertia weight: The velocity equation of PSO could be modified as follow
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, where the new constant w  

is called „inertia weight‟ [5]. It alters the impact of previous velocity on the next velocity. In general, 

it‟s taken to be 1, but it has been found experimentally that the inertia weight value between 0.9 and 

1.2 results a better improvement. Inertia weight affects the searh ability of particles. Larger the inertia 

weight, larger will be the global search ability. Similarly, smaller inertia weight results local search 

ability. 

ii) Constriction factor: It was given by Eberhert and Shi in 2000 [5]. The velocity equation could also be 

modified as ))()(( 2211
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 , where  is 

called the constriction factor. The value of   is 
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, 1 2 4c c    , then the convergence speed is much faster. In 

general  is taken to be 4.1. The constriction factor   is then 0.729. The PSO with constriction factor 

is a special case of PSO with weight factor. 

iii) Proper selection of particles: If we select all the initial particles closer to the optimal value, it would be 

easier to find the solution in a very less number of iteration. This is because of lower search space. 

Choosing a larger number of particles also give the solution in less number of iteration. This is because 

of increased probability of finding the position of optimal solution. The compound PSO was given by 

Angeline in 1998 [6], which gives an idea of basic selection strategy. For instance, a set of best 

particles could be chosen only for the next iteration. 

iv) Proper random number generator: Consider the following velocity update equation [7]
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. This equation is using 

only one random number 1r , reducing the computational time for generating two random number. If 

there were two random numbers 
k

r1  and 
k

r2  and both are closer to zero, we get almost no impact of 

pbest or gbest on 
1k

idv . But if we take 
k

r2 as 1-
k

r1 , we have an impact on 
1k

idv .  

All the improvements mentioned above are incorporated in our present paper. For instance, we are choosing initial 

particle selection strategy in a smaller region. We are imposing a combined constriction factor and weight factor 

also, which results an update of 1,cw , and 2c . We are also choosing one random number for any iteration. 

PENALTY METHODS 

This section introduces briefly about the penalty method we are about to use. We are defining this method in the 

context of solving non-linear programming problem (NLPP) with inequality constraint (as we are concern only with 

inequality constraint problems here). Let‟s consider the NLPP with n constraint as:  

Minimize  )(xf  

Subject to  mixg i ....2,1,0)( 
      … (3)
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The above NLPP with constraint could be solved by converting it into NLPP without constraint by a method called 

„penalty method‟. If we apply the penalty method for an inequality constraint [10], the penalty will be, 

2))(,0max( xg i , for constraint i.                … (4) 

That means if the constraint is violated, a penalty must be imposed for that. If the constraint is not violated, the 

penalty becomes 0 automatically from the above formula. The index 2 is used for making the value of imposed 

penalty positive. This penalty must be added or subtracted to the minimization or maximization problems 

respectively.  

An amplifying constant, called penalty constant is used for making the penalty more sharper/higher. Therefore the 

penalty function becomes 

    c.
2))(,0max( xg i , for constraint i.  

Also, the unconstraint problem becomes 

Minimize
2))(,0max(.)( xgcxf i .    … (5) 

ROLL OF CONSTANT IN PENALTY FUNCTION 

The constant is used for making the penalty large. The convexity of minimization problem above depends on the 

constant c. If the value of c is higher, convexity is higher. More convex region means, lesser search space could be 

achieved easily. It would be better to have much larger value of constant c. But we can‟t take much higher values 

due to constraint by software. 

METHODOLOGY 

We have applied the penalty method over NLPP with constraints to convert into NLPP without constraints. Then we 

are solving the NLPP without constraints by improved PSO methods. The improved version of PSO means, we are 

taking care of each factor. These factors are already discussed above in earlier sections.  

We are more concern with the penalty constant c in this paper. For that reason, we are taking two values of c, they 

are 10 and 100. Then SCILAB programming language is used to implement the PSO over NLPP without constraints. 

We are taking five test problems for this purpose. All are solved first by taking c=10, then by taking c=100 

respectively. The five test problems are intentionally taken to be easier and with two dimensional only, so that the 

solution could be visualized/obtained manually also. Then, It would be easier to compare with the computationally 

obtained solutions. Also, the graph of the function could be drawn in a three dimensional space. 

The following five test problems are used: 

Test problem 1:  Minimize yx  , subjected to 122  yx . Manual solution is 2 at 

)2/1,2/1(),( yx . 

Test problem 2: Minimize
22 )10()10(  yx , subjected to 220 yx . Manual solution is 1 at 

)2/110,2/110(),( yx . 
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Test problem 3: Minimize - xy , subjected to 1,1  yxyx . Manual solution is -0.25 at 

)2/1,2/1(),( yx . 

Test   problem   4:    Minimize 
22 yx  , subject to 1,1  xyyx . Manual solution is 1 at )0,1(),( yx . 

Test problem 5: Minimize 2 yx , subjected to 
2)1(1  xy . Manual solution is -.25 at 

)4/5,2/1(),( yx . 

COMPUTITIONAL RESULTS 

We have conducted the experiments with 50 initial particles. Two values of penalty constants (c=10 and c=100) are 

selected. Over 800 iterations are conducted in each experiment in SCILAB. The weight factor is taken to be 

negligible (0.01), constriction factor as 1. The search region is taken approximately as 10 units. The values of each 

experiment are noted, and compared with the manual values.  

CASE 1: c=10 

Test function x value y value Optimal value 

1 -.7202833 -.7182556 -1.4264986 

2 10.673949 10.672712 .9523822 

3 .5108446 .5147917 -.2564064 

4 .9090909 0 .9090909 

5 .4949041 1.2055173 -.2749725 

 

CASE 2: c=100 

Test function x value Y value Optimal value 

1 -.7144323 -.7017164 -1.4153538 

2 10.689868 10.715096 .9958356 

3 .4879969 .5145776 -.2504495 

4 .9900990 0 .9900990 

5 .4830205 1.2622229 -.2522115 

 

CONCLUSIONS 

We have conducted the computational experiment successfully and found that the results are sharper when higher 

convexity is used. The results in terms of optimal value are close to the manual values in order of 10-3 

approximately. When compared with the results in [9], we have found an improvement with apparently lesser 

number of particles and lesser number of iterations. This is due to two main things used in the experiments. They are 

i) Improvement in choosing the random number during PSO experiments and ii) Choosing higher value of penalty 

constant. We have applied the test over smaller problems. Further, this work could be extended to some well-known 

test functions like Rastrigin function, Rosenbrook function etc. The research could also be extended to the equality 

constraints, in which Penalty and Barrier methods behaves alike. 
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