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Abstract 

Purpose: The present paper focuses on the Non-Linear Programming Problem (NLPP) with equality constraints. NLPP with 

constraints could be solved by penalty or barrier methods.  

Methodology: We apply the penalty method to the NLPP with equality constraints only. The non-quadratic penalty method 

is considered for this purpose. We considered a transcendental i.e. exponential function for imposing the penalty due to the 

constraint violation. The unconstrained NLPP obtained in this way is then processed for further solution. An improved 

version of evolutionary and famous meta-heuristic Particle Swarm Optimization (PSO) is used for the same. The method is 

tested with the help of some test problems and mathematical software SCILAB. The solution is compared with the solution 

of the quadratic penalty method.  

Results: The results are also compared with some existing results in the literature.  

Keywords: Penalty Function, NLPP, Non-quadratic Penalty Function, Improved Particle Swarm Optimization, Optimization 

Test Problems. 

INTRODUCTION 

The Non-Linear Programming Problem (NLPP) is computationally hard as compared to the Linear Programming Problem 

(LPP). Further, In NLPP, there are two types: unconstrained and constrained NLPP. The constrained NLPP, which is under 

consideration for this paper is defined as:  

Minimize )(xf                                                                                                                                 (1) 

Subject to rixg i ....2,1,0)(  and mrrjxh j ....2,1,0)(   

The solution of equation (1) is achieved by various ways: Lagrangian, KKT (Feng, M. and Li, S., 2018) conditions, penalty 

and barrier methods are some of them (Bertsekas, D.P., 1999). Further, there are various methods, which are derived from 

these existing methods. For example, the logarithmic barrier method uses the logarithmic function to impose barriers 

obtained through the constraints (Bertsekas, D.P., 1999, Ben-Tal, A. and Zibulevsky, M., 1997). Inverse barrier function 

introduced in (Den Hertog, D., Roos, C. and Terlaky, T., 1994) is applied by taking the reciprocal of each constraint and 

applying the constant and adding to the objective function. Semi-penalty function method and Semi-augmented Lagrangian 

penalty function have some modifications from the existing conventional penalty method (Nie, P.Y., 2006). Interior and 

exterior penalty methods introduced, in which the interior penalty function is applied for the ill-defined objective function. 

The conventional quadratic penalty function or quadratic loss function is mostly used for almost all NLPP. Further, there are 

some modifications in KKT (Feng, M. and Li, S., 2018) condition also. For example, Approximate Strong KKT conditions 

(ASKKT) is used for multi-objective optimization. Approximate KKT conditions (AKKT) was introduced in (Haeser, G. and 

Schuverdt, M.L., 2011), a slight variation of AKKT is sufficient for the convex program, either for vibrational inequalities or 

optimization. Some methods are derived from the Lagrangian method also, which exist in literature. For example, the 

augmented Lagrangian method (Bertsekas, D.P., 1999) and two-phase augmented lagrangian method are there for distributed 

non-convex optimization and convex quadratic semi-definite programming respectively. All these methods work well on 

NLPP directly or similar convex/non-convex problems. In addition to the above, there are some methods in the literature, 

which are applicable to the NLPP without constraints. The steepest descent method, gradient descent method, Newton 

method are some of them. (Eberhart, R. and Kennedy, J., 1995) 

In the present paper, we are concerned about the NLPP with equality constraint only. Therefore, the problem under 

consideration is defined as:  

Minimize )(xf
     

                                                                                      (2) 

Subject to ljxh j ....2,1,0)(   
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Which is derived from the equation (1) by eliminating all the inequality constraints and considering only l equality 

constraints. In this paper, we will be solving equation (2) by non-quadratic penalty function. A non-quadratic penalty 

function is introduced in (Nie, P.Y., 2006). The method is introduced as a semi non-quadratic penalty function and works 

well for equation (1). The word semi is used in the article to deal with equality constraints only leaving the inequality 

constraints as the original problem. We consider only the equality constraints to use and apply this method.  

Therefore, in the present paper, we are applying this algorithm over NLPP with equality constraints with the help of an 

improved PSO, i.e. we are checking the performance measure and further comparing it with the performance measure of the 

quadratic penalty function. We are using the SCILAB programming language for this purpose. 

QUADRATIC PENALTY FUNCTION: A penalty function for (1) is defined as:  

Minimize 
2

2

2

1 ))(())(,0max()( xhcxgcxf jj

j

ii

i

                                                                                   (3) 

We are considering only the equality constraint, therefore the penalty function is  

Minimize
2))(()( xhcxf ii

i

                                                                                                    (4) 

Which is also called quadratic penalty function or quadratic loss function.     

Consider the simple example 

Minimize x/100       

Subject to 5x .                                                                                                        (5) 

The penalty could be imposed by the help of constraints available. Therefore, the problem (5) becomes 

Minimize x/100 + 
2)5( xc                                                                                       (6) 

The meaning of equation (6) is simple. We have to minimize a sum which consists of a given function and a penalty due to 

constraint. If we take 5x , we will have a minimum value of x/100 + 
2)5( xc . In all other cases under the domain, 

we get a value greater than that. The purpose of applying the penalty is well served here. The minimization function will pull 

the entire function to the minimum value, which is required.  

Non-quadratic Penalty functions: Inspired from the paper (Nie, P.Y., 2006), dealing with semi-non quadratic penalty 

function, we define the non-quadratic penalty function for (2) as follows:  

Minimize )1()(
2))((


xh

i

i

iecxf
                                                                                    

(7)
 

If we consider the above over the problem (5), then the non-quadratic penalty function could be  

Minimize x/100 + )1(
2)5( xec                                                                                     (8) 

If we consider (8), we have a penalty again as )1(
2)5( xec , which is zero for 5x , and greater for all other values. But 

this penalty is not using the conventional approach. This comes under non-quadratic penalty methods. Also, the exponential 

function gives a higher value even for a small change x . Therefore, this penalty function is more sensitive to the input values 

compared to the quadratic penalty function. 

The present paper is discussing the performance measure of this method. 

PARTICLE SWARM OPTIMIZATION: Proposed by Kennedy and Eberheart in 1995, it is an evolutionary algorithm, 

also called a meta-heuristic inspired by nature. It is just similar to the flock of birds or fish searches for food and comes 

together if some food is found randomly at someplace.  Initially, we take some particle called solution randomly over the 

searched space. In each iteration, we improve the solution by taking into consideration the best particle’s position among all 

particles and each particle’s own best position. I.e. each particle follows the best particle without forgetting its personal best 

position. Each particle is supposed to update its position by the following two equations:  

)()( 2211

1 k

id

kkk

id

k

id

kk

id

k

id xgbestrcxpbestrcvv 


                                                                   (9)
 



International Journal of Students’ Research in Technology & Management 
eISSN: 2321-2543, Vol 7, No 3, 2019, pp 01-06 

https://doi.org/10.18510/ijsrtm.2019.715 

3 |www.ijsrtm.in                                                                                                                                              © Prajapati et al. 

1 1k k k

id id idx x v                                                                          (10) 

Where 
1k

idv  represents the velocity of i
th

 particle at k+1
th

 iteration.
k

r1
and

k
r2

are two random numbers generated at k
th

 

iteration. 1c and 2c  are two constants usually taken as 2. 
k

idpbest and
k

gbest are the best positions of i
th

 particle and 

overall best position of any particle at k
th

 iteration. Further, 
1k

idx represents the position in k+1
th

 iteration, which depends 

on  
1k

idx and
1k

idv , the previous position and velocity updated. 

IMPROVEMENTS IN PSO:  

1. Inertia Weight: Consider the following updated equation (9): 

)()( 2211

1 k

id

kkk

id

k

id

kk

id

k

id xgbestrcxpbestrcwvv 


where, w is the inertia weight (Angeline, P.J., 

1998). It changes the impact of the previous velocity over the next velocity. It is usually taken to be 1. Inertia weight 

varying from 0.9 to 1.2 is useful in better results. Larger inertia weight means larger global searchability. Similarly, 

smaller inertia weight means local searchability. 
 

2. Constriction Factor: Consider the updated equation of (9) as: 

))()(( 2211

1 k

id

kkk

id

k

id

kk

id

k

id xgbestrcxpbestrcvv 


 where   is called the constriction 

factor (Angeline, P.J., 1998). The value of this is  
2

2

| 2 4 |


  


  
where 1 2 4c c    . Usually, this 

makes convergence faster. Generally, this value is taken to be 4.1 for better convergence. The value of   is .729 for this 

case. The weight factor may be treated as a special case of constriction factor in PSO. 
 

3. Proper selection of particles: The selection of the initial particle plays an important role in the entire solution of PSO. The 

number of iteration taken is less if we generate all initial particles close to the optimal solution. Also, if we take the 

higher number of the particle at the start, we find the solution in comparatively less number of iterations. This is because 

a higher number of particles results in faster exploration within the search space. In, a special selection strategy is chosen 

in which each iteration consists of some best particles from the previous iteration, and removal of worst particles, which 

unnecessarily consumes the system’s time. Therefore, proper particle selection is a must in PSO.  
 

4. Random number generator: Consider the updated equation (9):  

))(1()( 1211

1 k

id

kkk

id

k

id

kk

id

k

id xgbestrcxpbestrcvv 


, which consists of only one random number 

(Li, W.T., Shi, X.W. and Hei, Y.Q., 2008). The two benefits are oblivious.  First, we get a decrease in system time, which 

was used earlier to generate two random numbers. Second, we get an impact either from idpbest or gbest from on the 

next iteration. The cases of either random numbers as small or both large are avoided, which results in very little progress 

or going out from the searched region respectively. (Rao, R. and Patel, V., 2013) 

Although there are many more strategies developed till now in PSO improvement (Du, K.L. and Swamy, M.N.S., 2016), the 

present algorithm uses the improved PSO in inertia weight and random number generator mentioned above. 

METHODOLOGY  

Consider again the equation (7): )1()(
2))((


xh

i

i

iecxf , which is an unconstrained optimization problem. This 

unconstrained problem uses the penalty as a non-quadratic penalty. The exponential term is used in place of the general 

quadratic penalty or quadratic loss function. Further, the unconstrained optimization problem obtained in this way is 

processed for the solution. The solution is done by an improved PSO algorithm. (Andrei, N., 2008)  

Also, the method is compared with the solution of the unconstrained optimization problem (4) 
2))(()( xhcxf ii

i

 , 

which is obtained by the usual penalty function, called the quadratic penalty function. 

Therefore, in our present paper, we are mainly focusing two things: (i) Solution of NLPP by non-quadratic penalty function 

ii) Solution by a particular improved version of PSO, which consists of only one random number in each iteration, which 

further decrease the computational load and guarantees an improvement in each iteration.  
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The computational experiment is conducted over 5 test problems (Rao, R. and Patel, V., 2013, Andrei, N., 2008, and Younis, 

A., and Dong, Z., 2010] with arbitrary constraint, which are as follows: 

Test problem 1: Rosenbrock function constrained to a circle  

   Minimize
222 )(100)1(),( xyxyxf  , subject to 222  yx  

Test problem 2: Rastigrin function constrained to a circle 

   Minimize )2cos10()2cos10(10),( 22 yyxxyxf    

   Subject to 122  yx  

Test problem3: Sphere function constrained to a plane:  

   Minimize 
i

ixyxf
2

),(  

Subject to 11 
i

x  

Test problem 4: Booth function constrained over a circle:  

Minimize
22 )52()72(),(  yxyxyxf  

Subject to 42  yx  

Test problem 5: Himmelblau’s function constrained over a circle. 

   Minimize )7()11(),( 222  yxyxyxf  

Subject to 1322  yx  

All the test problems considered above are mostly used test problems in literature. The constraint is been taken arbitrarily.  

EXPERIMENTAL RESULT 

The above function is processed through equation (7) and equation (4) using the PSO algorithm in SCILAB. The improved 

PSO used consists of weight factor 0.01 (similar to) and one random number is used. A total of 800 iterations are performed 

and 50 particles were taken. Also, the input was given within an interval length of a maximum of 20 units in each dimension. 

The results are observed as follows:  

                 

                                               

  Figure 1: representation of all the test function without arbitrary constraints 
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Table 1: (exponential penalty, c= 10) 

Test function x range y range x optimal y optimal z optimal 

Test function 1 [-2.048,2.048] [-2.048,2.048] 1 1 3.466D-14 

Test function 2 [-5.12,5.12] [-5.12,5.12] .0000003 -.9962131 .996644 

Test function 3 [-5,5] [-5,5] -2.626D-89 5.043D-89 3.23D-177 

Test function 4 [-10,10] [-10,10] 1.018005 2.9663056 .0025274 

Test function 5 [-5,5] [-5,5] 3.093843 2.0966583 .2428109 

Table 2: (quadratic penalty, c= 10) 

Test function x range y range x optimal y optimal z optimal 

Test function 1 [-2.048,2.048] [-2.048,2.048] 1 1 2.208D-15 

Test function 2 [-5.12,5.12] [-5.12,5.12] -.9962175 4.688D-08 .9966479 

Test function 3 [-5,5] [-5,5] -2.52D-161 1.36D-161 1.59D-320 

Test function 4 [-10,10] [-10,10] 1.0848342 2.9165948 .1015092 

Test function 5 [-5,5] [-5,5] 3.093843 1.8411388 .4518183 

CONCLUSION AND FUTURE WORK 

With the analysis of a special penalty function, which is exponential and non-quadratic in nature, we have simply observed 

the better accuracy (on an average) as compared to the conventional quadratic penalty function. We can see the results 

obtained for several test functions in this regard. The above algorithm has been applied over the well-known test functions 

with any arbitrary constraint(s). Further, we can also increase the number of constraints and the number of dimensions also. 

The above algorithm has a simple demerit. Since the penalty function is exponential in nature, it’s highly sensitive i.e. it 

increases rapidly as compared to the quadratic penalty. Therefore, the specification of the domain in each dimension is more 

necessary in this algorithm. Also, there should not be any crest or trough going infinitely high within the specified region of 

the unconstrained test functions (with exponential penalty function). This will do nothing except the failure of software in 

finding the correct solution. We have chosen over 800 iterations for our results. This is just for showing the better accuracy 

level of results (in most cases) within an existing article, which used 1000 iterations and 100 particles. Only the test 

problems are different (Parsopoulos, K.E. and Vrahatis, M.N., 2002). The comparison of the above two algorithms is better 

in comparatively less number of iterations. We could also choose different values of penalty constants. The above work 

could also be generalized to the Non-Linear Programming Problem with inequality constrained or mixed constrained. 
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