
International Journal of Students’ Research in Technology & Management
eISSN: 2321-2543, Vol 7, No 2, 2019, pp 01-04

https://doi.org/10.18510/ijsrtm.2019.721

1 |www.ijsrtm.in ©Authors

EFFICIENT COMPUTATION OF SOBOL’ QUASI-RANDOM GENERATOR

Timotej Vesel

Bachelor Student in Financial Mathematics, University of Ljubljana, Slovenia

Email: timotej.vesel@gmail.com

Article History: Received on 20th April, Revised on 2nd June, Published on 8th June 2019

Abstract

Purpose of the study: The quasi-Monte Carlo method is an essential tool for modeling and analyzing various complex

problems in engineering, physical sciences, finance, and business. The crucial element of the method is a sequence of

deterministic quasi-random values, which is often obtained by using the Sobol’ quasi-random generator. The purpose of this

study is to consider the time complexity of generating the Sobol’ sequence.

Methodology: Algorithms for determining the Sobol' sequence have been studied. The algorithms have been implemented

in the Python programming language.

Main Findings: It is established that this sequence can be generated in the linear time provided that generated numbers are

based on 32-bit or 64-bit integers. The main result of the paper is the algorithm, which enables this time-bound.

Applications of this study: The study can be applied in engineering, physical sciences, finance, and business.

Novelty/Originality of this study: It is shown that Sobol’ sequence can be generated in linear time.

Keywords: algorithm; time complexity; quasi-random generator; Sobol’ sequence; quasi-Monte Carlo simulation

INTRODUCTION AND LITERATURE REVIEW

Some crucial applications in engineering, physical sciences, finance, and business, to name just a few, are heavily

dependent on Monte Carlo simulation (Hammerley, 1964), which is often one of the few available tools in econometrics

(Lyuu, 2002). The Monte Carlo methods are a broad class of statistical sampling techniques employed to provide numerical

results of various challenging problems. In particular, Monte Carlo methods are ideal for establishing numerical solutions of

very high-dimensional integrals, which can be applied, for example, to model complex financial instruments.

Standard Monte Carlo methods compute integrals of functions by using a set of points selected randomly. Since this

approach admits various deficiencies, see, for example (Morokoff, 1995), a variation of this paradigm, called the quasi-

Monte Carlo method had been proposed in the Fifties (see Niederrreiter, 1992 for the details). This method is a nonrandom

variation of the Monte Carlo simulation, where randomly selected points are replaced with deterministic quasi-random

values. Some interesting examples of quasi-random generators are the Halton sequence (Halton, 1964), the Faure sequence

(as a particular instance of the Halton sequence), and recently introduced quasi-random based on generative neural

networks (Hofert, 2019). However, the most prominent and frequently applied example of a quasi-random generator is the

Sobol’ sequence (Sobol, 1967).

The Sobol’ sequence has been intensively investigated. Regarding the time complexity of the method, a more efficient

Graycode implementation has been proposed (Antonov, 1979), while examples of some other aspects can be found in (Joe

2003) and (Joe 2008). Several implementations of the Sobol’ sequence in various programming languages are also

available, see for example (Joe, 2019).

METHODOLOGY

To obtain Sobol' sequence, we need to take a primitive polynomial of some degree 𝑠 where the coefficients of the

polynomial denoted by 𝑎𝑖 are from the set {0,1}:

𝑥𝑠 + 𝑎1𝑥𝑠−1 + 𝑎2𝑥𝑠−2+…+𝑎𝑠−1𝑥1+1.

Loosely speaking, a primitive polynomial is a polynomial that cannot be resolved into factors. As an example, there are

exactly two primitive polynomials of degree at most two: 𝑥 + 1 and 𝑥2 + 𝑥 + 1.

The selected primitive polynomial is used to obtain the sequence of positive integers 𝑚1, 𝑚2, 𝑚3, … as follows. The

beginning of the sequence 𝑚1, 𝑚2,, …, 𝑚𝑠 can be chosen by a user so that the condition 𝑚𝑖 < 2𝑖 is fulfilled for every 1 ≤
𝑖 ≤ 𝑠. The rest of the sequence is for 𝑖 > 𝑠 provided by the formula:

𝑚𝑖 = 2𝑎1𝑚𝑖−1 ⊕ 22𝑎2𝑚𝑖−2 ⊕ … ⊕ 2𝑠−1𝑎𝑠−1𝑚𝑖−𝑠+1 ⊕ 2𝑠𝑚𝑖−𝑠 ⊕ 𝑚𝑖−𝑠.

In the above formula, ⊕ denotes the bitwise exclusive operator. The obtained numbers are the basis for the sequence of real

numbers 𝑣1, 𝑣2, 𝑣3, … which are given by the formula:

𝑣𝑖 =
𝑚𝑖

.
2𝑖

https://doi.org/10.18510/ijsrtm.2019.721
http://www.ijsrtm.in/
mailto:timotej.vesel@gmail.com

International Journal of Students’ Research in Technology & Management
eISSN: 2321-2543, Vol 7, No 2, 2019, pp 01-04

https://doi.org/10.18510/ijsrtm.2019.721

2 |www.ijsrtm.in ©Authors

Finally, for 𝑖 ≥ 1, the point 𝑥𝑖 of Sobol’ sequence is obtained by

𝑥 = 𝑖1𝑣1 ⊕ 𝑖2𝑣2 ⊕ …

Here, 𝑖𝑘 denotes the k-th bit from the right in the binary representation of i.

Note that the above definition leads to a straightforward but relatively inefficient implementation that provides the Sobol’

sequence for a desired number of points. A more efficient implementation of this sequence is obtained by using the Gray

code as follows.

Let 𝑧𝑖 denote the index of the first bit 0 from the right in the binary representation of i. We can now obtain the sequence
recursively by the following definition:

𝑥0 = 0 and 𝑥𝑖 = 𝑥𝑖−1 ⊕ 𝑣𝑧𝑖−1 for 𝑖 ≥ 1.

Note that with the Gray code approach, the same set of points is obtained as with the standard one, yet the points are

different.

FINDINGS / RESULTS

We first present the Algorithm 1 called Zeros, which computes the sequence𝑧1, 𝑧2, …, 𝑧𝑛, where 𝑧𝑖 is the index of the first

bit 0 from the right in the binary representation of i. The i-th iteration of the for loop of the algorithm calculates the wanted

value for the integer i such the value of i is halved in every iteration of the inner while loop.

Algorithm 1: Zeros

Input: integer n

Output: sequence 𝑧1, 𝑧2,, …, 𝑧𝑛, where 𝑧𝑖 is the index of the first bit 0 from the right in the binary representation of i

for i := 1 to n do begin

t := 1;

j := i;
while j mod 2 = 1 do begin

j := ⌊𝑗/2⌋;
t := t + 1;

end;

𝑧𝑖 := t;

end;

The sequence 𝑧1, 𝑧2,…, 𝑧𝑛 obtained in the algorithm Zeros can be applied to compute the same number of points of Sobol’

sequence as can be seen in Algorithm 2 called Sobol. The algorithm follows the definition of Sobol’ sequence by using the

Gray code as presented in the previous section. In order to enable the computation of a bitwise exclusive operator⊕, it is

provided that its operands are always integers. For this reason, the division with a power of two is postponed to the last loop

of the algorithm. Note that the explicit computation of the sequence𝑣1, 𝑣2,, …, 𝑧𝑛 is therefore not needed in the algorithm. This

follows by the fact that the value of 𝑣𝑖 is simply the value of 𝑚𝑖 divided by 2.

Algorithm 2: Sobol

Input: polynomial a of degree s, number of points n

Output: Sobol’ sequence 𝑥0, 𝑥1,, …, 𝑥𝑛

Zeros(n, z);

for i := 1 to s do 𝑚𝑖 ≔ 2𝑖 − 1; // Determine 𝑚1, 𝑚2,𝑚3, …, 𝑚𝑠 such that 𝑚𝑖 < 2𝑖

l :=⌈log2 𝑛⌉;
for i := s+1 to l do begin

𝑚 := 𝑚𝑖−𝑠 ⊕ (𝑚𝑖−𝑠 ∙ 2𝑠);
for j := 1 to s-1 do

if 𝑎𝑗 ≠ 0 then

𝑚 := 𝑚𝑖 ⊕ (𝑚𝑖−𝑗 ∙ 2𝑗);
end;

𝑥0: = 0;
for i := 1 to n do

𝑥 := 𝑥𝑖−1 ⊕ 𝑚𝑧𝑖
;

end;

for i := 1 to n do

𝑥𝑖 :=
 𝑥𝑖 ;
2𝑙

https://doi.org/10.18510/ijsrtm.2019.721
http://www.ijsrtm.in/

International Journal of Students’ Research in Technology & Management
eISSN: 2321-2543, Vol 7, No 2, 2019, pp 01-04

https://doi.org/10.18510/ijsrtm.2019.721

3 |www.ijsrtm.in ©Authors

end;

It is next shown that the time complexity of computing Sobol’ sequence depends on the running time of the algorithm Zeros.
Let consider first the complexity of Zeros. Obviously, the number of iterations of the (inner) while log2 𝑛 bounds loop. Since
other statements of the body of the (outer) for loop can be executed in constant time and since the number of iterations of

this loop equals 𝑛, the complexity of this algorithm is (𝑛 log 𝑛).

To provide the time complexity of the other parts of the algorithm Sobol, note first that the computation of the bitwise

exclusive or operator ⊕ can be done in constant time in most programming languages provided that the operands are 32-bit

or 64-bit integers. Moreover, by using a bitwise arithmetic shift, the computation of a power of 2 can also be done in constant

time. Since this also holds for multiplications and divisions, the time complexity of all loops except the second one is linear.

In the second loop, the number of iterations of its inner loop equals 𝑠 − 1. Since the value of 𝑠 is constant, the time

complexity of the second loop is also linear.

By the above discussion, we could conclude that the algorithm Zeros is the obstacle for the linear time complexity of the

algorithm Sobol. Thus, a more efficient approach is suggested in the following two algorithms.

The algorithm gives the needed result ZerosP, where the sequence 𝑧0, 𝑧1,, …, 𝑧𝑛 is computed for 𝑛 = 2𝑘. This algorithm is

based on the observation, that for 1 ≤ 𝑖 ≤ 2𝑘 we have the following formula which can be easily confirmed by mathematical
induction:

𝑧 + 1, 𝑧𝑖 = 𝑘
𝑧𝑖+2𝑘 = { 𝑧𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Note that since 𝑧1 = 2 and 𝑧2 = 1, the above formula leads to Algorithm 3 called ZeroP.

Algorithm 3: ZerosP

Input: integer k

Output: sequence 𝑧1, 𝑧2,, …, 𝑧2𝑘, where 𝑧𝑖 is the index of the first bit 0 from the right in the binary representation of i

if 𝑘 ≤ 1 then begin

𝑧1 = 2;

𝑧2 = 1;
end

else begin

ZerosP(𝑘 − 1);
for i:= 1 to 2𝑘−1 do

if 𝑧𝑖 = 𝑘 then 𝑧𝑖+2𝑘−1 : = 𝑧𝑖 + 1

else 𝑧𝑖+2𝑘−1: = 𝑧𝑖 ;
end;

Since n need not be equal to a power of 2 in general, we need a procedure to establish the rest of the required values. The

procedure is given in Algorithm 4.

Algorithm 4: FastZeros

Input: integer n

Output: sequence 𝑧1, 𝑧2,, …, 𝑧𝑛, where 𝑧𝑖 is the index of the first bit 0 from the right in the binary representation of i

k := ⌊log2 𝑛⌋;
ZerosP(k);

for i:= 1 to 𝑛 − 2𝑘 do

if 𝑧𝑖 = 𝑘 + 1 then 𝑧𝑖+2𝑘: = 𝑧𝑖 + 1 else 𝑧𝑖+2𝑘: = 𝑧𝑖;

To see that the time complexity of FastZeros is linear, we first consider the running time of ZerosP. Note that the algorithm

ZerosP computes 𝑧1, 𝑧2,, …, 𝑧2𝑘, where 2𝑘 ≤ 𝑛 < 2𝑘+1. Since the loop of ZerosP(i) contains 2𝑖−1 steps and since ZeroP is

called for every 1≤ 𝑖 ≤ 𝑘, the total number of steps of the algorithm can be bounded by

𝑘

∑ 2𝑖−1 = 2𝑘 − 1.

𝑖=1

Besides the call of ZerosP, which is performed in 2𝑘 − 1 and the computation of k, FastZeros contains the loop which
computes the remaining entries 𝑧2𝑘, 𝑧2𝑘+1, … , 𝑧𝑛. Since this procedure is linear in the number of entries, the time

complexity of FastZeros is bounded by (𝑛).

https://doi.org/10.18510/ijsrtm.2019.721
http://www.ijsrtm.in/

International Journal of Students’ Research in Technology & Management
eISSN: 2321-2543, Vol 7, No 2, 2019, pp 01-04

https://doi.org/10.18510/ijsrtm.2019.721

4 |www.ijsrtm.in ©Authors

Note that from the above discussion, it follows that if FastZeros replace the call Zeros in Algorithm 2, the overall time

complexity of the algorithm Sobol is linear.

DISCUSSION / ANALYSIS

All algorithms of the previous section have been implemented in the Python programming language. The algorithm Sobol

has been tested for n = 105, 106, 107, 108. The results of computations are given in Table 1.

Table 1: Running times (s)

n 105 106 107 108

Sobol with
Zeros

0.126 1.245 12.734 127.769

Sobol with
FastZeros

0.091 0.905 9.029 95.948

Source: program in Python experiments

The results show that the version of Sobol with FastZeros outperforms the variant which uses the algorithm Zeros and

confirms the time complexity analysis of the algorithms.

CONCLUSION

The Sobol’ quasi-random generator is one of the most important means of generating quasi-random numbers that are involved

in the quasi-Monte Carlo simulation. This simulation offers the numerical solution of very high-dimensional integrals

required for solving difficult problems in science, engineering, finance, and business.

It is shown that the Sobol' sequence can be generated in linear time with respect to the number of points of the sequence.

The presented algorithms are implemented in Python programming language, and their running times are tested for various

points.

LIMITATION AND STUDY FORWARD

The obtained time complexity of the presented algorithm can be achieved only if all applied basic operations (a bitwise

arithmetic shift, exclusive or operator, division, and multiplication) are performed in constant time in the corresponding

computer program. Though this is the case for most of the programming languages and computers provided that the

operands are 32-bit integers, this sometimes needs not to be true (in rare cases) when 64-bit integers are required. Note,

however, that 64-bit integers are needed if the number of points of the sequence exceeds 232 = 4294967296.

Note also that the proposed method for fast computation of Sobol’ sequence depends on recursion. Notwithstanding, since
almost all modern imperative programming languages support recursion, this is not a severe limitation of the algorithm. It

is true however, that programming languages are generally slower with recursion. Therefore, it would be interesting to

devise a non-recursive version of the algorithm proposed in this work.

REFERENCES

1. Antonov I. A. & Saleev V. M. (1979). An economical method of computing LP τ-sequences. USSR

Computational Mathematics and Mathematical Physics, 19, 252–256. https://doi.org/10.1016/0041-

5553(79)90085-5

2. Halton, J. (1964). Algorithm 247: Radical-inverse quasi-random point sequence. Communications of the ACM, 7,

701-702. https://doi.org/10.1145/355588.365104

3. Hammersley, J. M. & Handscomb, D. C. (1964). Monte Carlo Methods, New York: John Wiley & Sons.

https://doi.org/10.1007/978-94-009-5819-7

PMid:14223010

4. Hofert, M. Prasad. A. Zhu, M. Quasi-random number generators for multivariate distributions based on generative

neural networks. https://arxiv.org/pdf/1811.00683.pdf. Accessed 7 May 2019.
5. Joe S. & Kuo F. Y. (2003). Remark on Algorithm 659: Implementing Sobol’s quasi-random sequence generator.

ACM Transactions on Mathematical Software, 29, 49–57. https://doi.org/10.1145/641876.641879

6. Joe S. & Kuo F. Y. (2008). Constructing Sobol′ sequences with better two-dimensional projections, SIAM Journal

on Scientific Computing. 30, 2635–2654. https://doi.org/10.1137/070709359

7. Joe S. & Kuo F. Y. Sobol sequence generator. https://web.maths.unsw.edu.au/~fkuo/sobol/. Accessed 7 May 2019.

8. Lyuu, Y.-D. (2002). Financial Engineering and Computation, Cambridge, UK: Cambridge University Press.

9. Morokoff, W. J. & Caflisch R. E. (1995). Quasi-Monte Carlo Integration. Journal of Computational Physics. 122

(2), 218-230. https://doi.org/10.1006/jcph.1995.1209

10. Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods, Philadelphia, PA: Society

for Industrial and Applied Mathematics.

Sobol, I.M. (1967). Distribution of points in a cube and approximate evaluation of integrals. USSR Computational

Mathematics and Mathematical Physics, 7, 86–112. https://doi.org/10.1016/0041-5553(67)90144-9

https://doi.org/10.18510/ijsrtm.2019.721
http://www.ijsrtm.in/
https://doi.org/10.1016/0041-5553(79)90085-5
https://doi.org/10.1016/0041-5553(79)90085-5
https://doi.org/10.1145/355588.365104
https://doi.org/10.1007/978-94-009-5819-7
https://arxiv.org/pdf/1811.00683.pdf
https://doi.org/10.1145/641876.641879
https://doi.org/10.1137/070709359
https://web.maths.unsw.edu.au/~fkuo/sobol/
https://doi.org/10.1006/jcph.1995.1209
https://doi.org/10.1016/0041-5553(67)90144-9

