\((\lambda,\mu)\)-Multi Anti Fuzzy subgroup of a group

Kr. Balasubramanian\(^1\), R. Revathy\(^2\)

\(^1\)Assistant Professor in Mathematics, H.H. The Rajah’s college(Affiliated to bharathidasan University, Trichy), Pudukkottai, Tamil Nadu, India; \(^2\)Research Scholar in Mathematics, H.H. The Rajah’s college(Affiliated to bharathidasan University, Trichy), Pudukkottai, Tamil Nadu, India.

Email: bbalamohith@gmail.com, revathyrsmaths@gmail.com

Abstract

Purpose of the study: To develop \((\lambda,\mu)\)-anti fuzzy subgroup of a group.

Methodology: The fundamental idea of \((\lambda,\mu)\)-anti fuzzy subgroup to create a \((\lambda,\mu)\)-multi anti fuzzy subgroup.

Main Findings: \((\lambda,\mu)\) – multi anti fuzzy cosets of a group.

Applications of this study: The advancement of the theory of a group’s multiple fuzzy subgroups.

Novelty/Originality of this study: The concept of \((\lambda,\mu)\)-multi anti fuzzy cosets of a group has been defined, and various associated theorems have been demonstrated using examples.

INTRODUCTION

Fuzzy sets were first introduced by [Feng, Y. and Yao, B. (2012)] and then the fuzzy sets have been used in the reconsideration of classical mathematics. [Yuan, X., Zhang, C., and Ren, Y. (2003)] introduced the concept of fuzzy subgroup with thresholds. A fuzzy subgroup with thresholds \(\lambda\) and \(\mu\) is also called a \(\textit{(}\lambda,\mu)\)-fuzzy subgroup. [Yao] continued to research \((\lambda,\mu)\)-fuzzy normal subgroups, \((\lambda,\mu)\)-fuzzy quotient subgroups and \((\lambda,\mu)\)-fuzzy subrings in [Yao, B. (2005)]. [Shen] researched anti-fuzzy subgroups in [Shen, Z (1995)]. By a fuzzy subset of a non-empty set \(X\) we mean a mapping from \(X\) to the unit interval \([0,1]\). Throughout this article, we will always assume that \(0 \leq \lambda < \mu \leq 1\). [Atanassov, K.T. (1986), Atanassov, K.T. (1994), Mukharjee, N. P. and Bhattacharya, P. (1984), Zadeh, L.A. (1965)]

Preliminaries Definition: 2.1 ([Feng, Y. and Yao, B. (2012)])

Let \(X\) be a non-empty set. A fuzzy subset \(A\) of \(X\) is defined by a function \(A:X\rightarrow[0,1]\).

Definition: 2.2 ([Sabu, S. and Ramakrishnan, T.V.(2011a), Sabu, S., Ramakrishnan, T.V.(2011b)])

Let \(X\) be a non-empty set. A multi fuzzy set \(A\) in \(X\) is defined as the set of ordered sequences as follows. \(A = \{(x, A_1(x), A_2(x), \ldots, A_k(x), \ldots) : x \in X\}\). Where \(A_i:X \rightarrow [0,1] \ for \ all \ i\).

Definition: 2.3 ([Sabu, S., Ramakrishnan, T.V.(2011b)])

Let \(X\) be a non-empty set. A \(k\)-dimensional multi fuzzy set \(A\) in \(X\) is defined by the set \(A = \{(x, (A_1(x), A_2(x), \ldots, A_k(x))) : x \in X\}\). Where \(A_i:X \rightarrow [0,1] \ for \ i = 1,2,3, \ldots, k\).

Definition: 2.4 ([Feng, Y. and Yao, B.(2012)])

Let \(A\) be a fuzzy subset of \(G\). \(A\) is called a \((\lambda,\mu)\)-anti fuzzy subgroup of \(G\) if, for all \(x, y \in G\),

Visit IJSRTM at https://mgesjournals.com/ijsrtm/
Let \((xy) \) \(A \mu \leq (x) \lor A(y) \lor \lambda((x^{-1}) A \mu \leq A(x) \lor \lambda \)

Clearly, a \((0, 1)\)-anti fuzzy subgroup is just an anti fuzzy subgroup, and thus a \((\lambda, \mu)\)-anti fuzzy subgroup is a generalization of fuzzy subgroup.

MAIN RESULTS

Definition: 3.1

Let \(A \) be a fuzzy subset of \(G \). Then a \((\lambda, \mu)\)-anti fuzzy subset \(A^{(\lambda,\mu)} \) of a fuzzy set \(A \) of \(G \) is defined as, \(A^{(\lambda,\mu)} = (x, \{ A A (1 - \lambda) \} \lor (1 - \mu) : x \in G) \).

Definition: 3.2

Let \(A \) be a multi fuzzy subset of \(G \). Then a \((\lambda, \mu)\)-multi anti fuzzy subset \(A^{(\lambda,\mu)} \) of a multifuzzy set \(A \) of \(G \) is defined as, \(A^{(\lambda,\mu)} = (x, \{ A_i A (1 - \lambda_i) \} \lor (1 - \mu_i) : x \in G) \).

Clearly, a \((0, 1)\)-multi anti fuzzy subset is just a multi fuzzy subset of \(G \), and thus a \((\lambda, \mu)\)-multi anti fuzzy subset is also a generalization of multi fuzzy subset. Where \((0,1)\)-multi anti fuzzy subset \(A \) is defined as \(A^{(0,1)} = (A_i^{(0,1)}) \).

Definition: 3.3

Let \(A \) be a multi fuzzy subset of \(G \). \(A = (A_i) \) is called a \((\lambda, \mu)\)-multi anti fuzzy subgroup of \(G \)

If, for all \(x \in G, A(xy) \lor \mu \leq \max \{A(x), A(y)\} \ A \lambda_i \)

That is, \(A(xy) \lor \mu_i \leq \max \{A_i(x), A_i(y)\} \ A \lambda_i \)

Clearly, a \((0, 1)\)-multi anti fuzzy subgroup is just a multi anti fuzzy subgroup of \(G \), and thus \((\lambda, \mu)\)-multi fuzzy subgroup is also a generalization of multi fuzzy subgroup.

Definition: 3.4

Let \((\lambda,\mu)\) and \(B^{(\lambda,\mu)}\) be any two \((\lambda, \mu)\)-multi anti fuzzy sets having the same dimension \(k \) of \(X \).

Then

\[
\begin{align*}
(i) & \quad A^{(\lambda,\mu)} \subseteq B^{(\lambda,\mu)}, \text{ iff } A^{(\lambda,\mu)}(x) \leq B^{(\lambda,\mu)}(x) \text{ for all } x \in X \\
(ii) & \quad A^{(\lambda,\mu)} = B^{(\lambda,\mu)}, \text{ iff } A^{(\lambda,\mu)}(x) = B^{(\lambda,\mu)}(x) \text{ for all } x \in X \\
(iii) & \quad A^{(\lambda,\mu)} = \{(x, 1 - A^{(\lambda,\mu)}): x \in X\} \\
(iv) & \quad A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)}(x) = \{(x, A_i^{(\lambda,\mu)} \cap B_i^{(\lambda,\mu)}(x)): x \in X\},
\end{align*}
\]

where \(A^{(\lambda,\mu)} \cap B^{(\lambda,\mu)}(x) = \min \{A_i^{(\lambda,\mu)}(x), B_i^{(\lambda,\mu)}(x)\} = \min \{A_i^{(\lambda,\mu)}(x), B_i^{(\lambda,\mu)}(x)\} \text{ for } i = 1, 2, \ldots, k \\
(v) & \quad A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}(x) = \{(x, A_i^{(\lambda,\mu)} \cup B_i^{(\lambda,\mu)}(x)): x \in X\},
\]

where \(A^{(\lambda,\mu)} \cup B^{(\lambda,\mu)}(x) = \max \{A_i^{(\lambda,\mu)}(x), B_i^{(\lambda,\mu)}(x)\} = \max \{A_i^{(\lambda,\mu)}(x), B_i^{(\lambda,\mu)}(x)\} \text{ for } i = 1, 2, \ldots, k \\

Here, \(A_i^{(\lambda,\mu)}(x) \) and \(B_i^{(\lambda,\mu)}(x) \) represents the corresponding \(i \text{th} \) position membership values of \(A^{(\lambda,\mu)} \) and \(B^{(\lambda,\mu)} \).

Definition: 3.5

Let \(A^{(\lambda,\mu)} = \{(x, A_i^{(\lambda,\mu)}(x)): x \in X\} \) be a \((\lambda, \mu)\)-MAFS of dimension \(k \) and let \(a = (a_1, a_2, \ldots, a_k) \in [0,1]^k \), where each \(a_i \in [0,1] \) for all i. Then the \(\alpha \) - lowerer cut of \((\lambda,\mu)\) is the set of all \(x \) such that \(A_i^{(\lambda,\mu)}(x) \leq a_i \), \(\forall i \) and is denoted by \([A^{(\lambda,\mu)}]_{\alpha_i} \). Clearly it is a crisp set.

Definition: 3.6

Let \(A^{(\lambda,\mu)} = \{(x, A_i^{(\lambda,\mu)}(x)): x \in X\} \) be a \((\lambda, \mu)\)-MAFS of dimension \(k \) and let \(a = (a_1, a_2, \ldots, a_k) \in [0,1]^k \), where each \(a_i \in [0,1] \) for all i. Then the \(\alpha \) - lowerer cut of \((\lambda,\mu)\) is the set of all \(x \) such that \(A_i^{(\lambda,\mu)}(x) < a_i, \forall i \) and is denoted by \([A^{(\lambda,\mu)}]_{\alpha_i} \). Clearly it is also a crisp set.

Theorem: 3.7 ([Feng, Y. and Yao, B. (2012)])

Let \(A \) and \(B \) are any two \((\lambda, \mu)\)-MAFSs of dimension \(k \) taken from a non-empty set \(X \). Then \(A \subseteq B \) if and only if \([A^{(\lambda,\mu)}]_{\alpha_i} \subseteq [B^{(\lambda,\mu)}]_{\alpha_i} \) for every \(\alpha_i \in [0,1]^k \).
Definition: 3.8
A MFS $A = \{ (x,A(x)): x \in X \}$ of a group G is said to be a (λ,μ)-multi anti fuzzy sub group of $G((\lambda,\mu)$-MAFSG), if it satisfies the following: For $\lambda,\mu \in [0,1]^k$, $0 \leq \lambda_i \leq \mu_i \leq 1$, $0 \leq \lambda + \mu \leq 1(\lambda) A(xy) A \mu \leq \max(A(x),A(y)) \lor \lambda$

(ii) $\langle x \rangle A \mu \leq \langle x \rangle \lor \lambda$ for all $x, y \in G$. That is,

(i) $\langle xy \rangle A \mu \leq \max\{A(x),A(y)\} \lor \lambda_i$

(ii) $\langle x \rangle A \mu_i \leq A(x) \lor \lambda_i$ for all $x, y \in G$.

Clearly, a $(0,1)$-multi anti fuzzy subgroup is just a multi anti fuzzy subgroup of G, and thus a (λ,μ)-multi anti fuzzy subgroup is a generalization of multi anti fuzzy subgroup.

(i) If A is a (λ,μ)-MAFSG of G, then the complement of A need not be an (λ,μ)-MAFSG of G.

(ii) A is a MAFSG of a group \iff each (λ,μ)-AFS $^{(1,\mu)}$ is a (λ,μ)-AFSG of G, $i=1,2,..,k$

Definition: 3.10 (Muthuraj, R. and Balamurugan, S.(2013))
A (λ,μ)-MAFSG $^{(1)}$ of a group G is said to be a (λ,μ)-multi anti fuzzy normal subgroup $((\lambda,\mu)$-MAFNSG) of G, it satisfies $A^{(1,\mu)}(x) = A^{(1,\mu)}(y)$ for all $x, y \in G$.

Definition: 3.11
Let (G, \cdot) be a Groupoid and $A^{(1,\mu)}, B^{(1,\mu)}$ be any two (λ,μ)-MAFSs having the same dimension k of G. Then the product of $(1,\mu)$ and $B^{(1,\mu)}$, denoted by $A^{(1,\mu)} \circ B^{(1,\mu)}$ and is defined as:

$A^{(1,\mu)} \circ B^{(1,\mu)}(x) = \max\{\min\{A^{(1,\mu)}(y), B^{(1,\mu)}(z)\}: yz = x, \forall y, z \in G\}$, $\forall x \in G$

Where $A^{(1,\mu)} = (\lambda_k, \lambda, \ldots, \lambda_k \times), if x is not expressible as x = yz$

That is, $\forall x \in G,$

$A^{(1,\mu)} \circ B^{(1,\mu)}(x) = \{\max\{\min\{A^{(1,\mu)}(y), B^{(1,\mu)}(z)\}: yz = x, \forall y, z \in G\}\}$

$(\lambda_k), if x is not expressible as x = yz$

Definition: 3.12
Let X and Y be any two non-empty sets and $f: X \rightarrow Y$ be a mapping. Let $(1,\mu)$ and $B^{(1,\mu)}$ be any two (λ,μ)-MAFSs of X and Y respectively having the same dimension k. Then the image of $(1,\mu)$ under the map f is denoted by $f(A^{(1,\mu)})$, is defined as: $\forall y \in Y,$

$f^{(1,\mu)}(y) = \max\{A^{(1,\mu)}(x)\}: x \in f^{-1}(y)$

Also, the pre-image of $B^{(1,\mu)}$ under the map f is denoted by $f^{-1}(B^{(1,\mu)})$ and is defined as: $f^{-1}(B^{(1,\mu)})(x) = (B^{(1,\mu)}(f(x)), \forall x \in X$.

Properties of (α, Q)-lower cuts of the (λ,μ)-MAFSG’s of a group
In this section, we have proved some theorems on (λ,μ)-MAFSG’s of a group G by using some of their (α, β)-Lower cuts.

Proposition: 4.1
If (λ) and $B^{(1,\mu)}$ are any two (λ,μ)-MAFSs of a universal set X.

Then the following holds good:

(i) $[A^{(1,\mu)}]_{[\lambda,\mu]} \subseteq [\lambda,\mu]_\beta$ if $\alpha < \delta$

(ii) $A^{(1,\mu)} \subseteq B^{(1,\mu)}$ implies $[B^{(1,\mu)}]_{\lambda_{\alpha}} \subseteq [A^{(1,\mu)}]_{\alpha}$

(iii) $[A^{(1,\mu)}] \cap B^{(1,\mu)} [\lambda_{\alpha}]_{\delta} \subseteq [A^{(1,\mu)}] \cap [B^{(1,\mu)}]_{\lambda_{\alpha}}$

(iv) $[A^{(1,\mu)}] \cup B^{(1,\mu)} \subseteq [A^{(1,\mu)}] \cup [B^{(1,\mu)}]$ (here equality holds if $\alpha = 1, \forall i) \cup [\lambda]_{\alpha} [\lambda_{\alpha}]_{\delta} \in [0,1]_{\delta}$
Proposition: 4.2
Let $(G,.)$ be a groupoid and $A^{(k)}_{\mu}$ and $B^{(k)}_{\mu}$ are any two (λ, μ) − MAFS’s of G. Then we have

$$[A^{(k)}_{\mu} \circ B^{(k)}_{\mu}]_{\alpha} = [A^{(k)}_{\mu}]_{\alpha} [B^{(k)}_{\mu}]_{\alpha}, \text{ where } \alpha \in [0,1]^k.$$

Theorem: 4.3
If (k) is a (λ, μ)-multi anti fuzzy subgroup of G and $\alpha \in [0,1]^k$, then the $\alpha − \text{lower cut}$ of (k), $[A^{(k)}_{\mu}]_{\alpha}$ is a subgroup of G, where $A^{(k)}_{\mu}(e) \leq \alpha$ and ‘e’ is the identity element of G.

Proof:
We have, $(k)(e) \leq \alpha, e \in [A^{(k)}_{\mu}]_{\alpha}$. Therefore $(k)_{\alpha} \neq \emptyset$.

Let $x, y \in [k]_{\alpha}$. Then $(k)(x) \leq \alpha$ and $A^{(k)}_{\mu}(y) \leq \alpha$.

Then for all i, $(k)_{\alpha(i)}(x) \leq \alpha_i$ and $A^{(k)}_{\mu}(y) \leq \alpha_i$.

$$\Rightarrow \max\{A^{(k)}_{\mu}(x), A^{(k)}_{\mu}(y)\} \leq \alpha_i, \forall \ i \ldots \ldots \ldots \ (1)$$

$$\Rightarrow A^{(k)}_{\mu}(xy^{-1}) \leq \max\{A^{(k)}_{\mu}(x), A^{(k)}_{\mu}(y)\} \leq \alpha_i, \forall \ i$$

since $A^{(k)}_{\mu}$ is a (λ, μ)-multi anti fuzzy subgroup of a group G and by (1).

$$\Rightarrow (k)_{\alpha(i)}(xy^{-1}) \leq \alpha_i, \forall \ i$$

$$\Rightarrow 1 \leq \alpha$$

$$\Rightarrow xy^{-1} \in [k]_{\alpha}$$

$$\Rightarrow [k]_{\alpha} \text{ is a subgroup of } G.$$
Proof:
Let \(x \in [x]_\alpha \) and \(g \in G \). Then \((\langle i \rangle_\alpha)(e) \leq \alpha \).
That is, \((\langle i \rangle_{\lambda_\mu})(x) \leq \alpha_i \) , \(\forall i \).
Since \([x]_\alpha \) is a \((\lambda, \mu)\)-MAFNSG of \(G \),
\((\langle i \rangle_{\lambda_\mu})(g^{-1} x g) = A_{\langle i \rangle_{\lambda_\mu}}(x) \), \(\forall i \).
\(\Rightarrow (\langle i \rangle_{\lambda_\mu})(g^{-1} x g) = A_{\langle i \rangle_{\lambda_\mu}}(x) \leq \alpha_i \), and \(\forall i \), by using (1).
\(\Rightarrow (\langle i \rangle_{\lambda_\mu})(g^{-1} x g) \leq \alpha_i \ \forall i \)
\(\Rightarrow (\langle i \rangle_{\lambda_\mu})(g^{-1} x g) \leq \alpha \Rightarrow g^{-1} x g \in [A_{\langle i \rangle_{\lambda_\mu}}]_\alpha \)
\(\Rightarrow [x]_\alpha \) is normal subgroup of \(G \).

Theorem: 4.6

If \(A_{\langle i \rangle_{\lambda_\mu}} \) and \(B_{\langle i \rangle_{\lambda_\mu}} \) are any two \((\lambda, \mu)\)-multi anti fuzzy subgroups ((\(\lambda, \mu\))-MAFSGs) of a group \(G \), then \(A_{\langle i \rangle_{\lambda_\mu}} \cup B_{\langle i \rangle_{\lambda_\mu}} \) is also a \((\lambda, \mu)\)-multi anti fuzzy subgroup of \(G \).

Proof:
\[(\langle \lambda_\mu \rangle, \langle \lambda_\mu \rangle^{-1}) = A_{\langle \lambda_\mu \rangle} \]

Assume \(A_{\langle \lambda_\mu \rangle} \) and \(B_{\langle \lambda_\mu \rangle} \) are any two \((\lambda, \mu)\)-multi anti fuzzy subgroup of a group \(G \), then \(\forall x, y \in G \),
(i) \((\langle \lambda_\mu \rangle)(xy^{-1}) \leq \max\{A_{\langle \lambda_\mu \rangle}(x), A_{\langle \lambda_\mu \rangle}(y)\} \)

(ii) \(B_{\langle \lambda_\mu \rangle}(xy^{-1}) \leq \max\{B_{\langle \lambda_\mu \rangle}(x), B_{\langle \lambda_\mu \rangle}(y)\} \).

Then \(A_{\langle \lambda_\mu \rangle} \cup B_{\langle \lambda_\mu \rangle} \) is a \((\lambda, \mu)\)-multi antifuzzy subgroup of \(G \).

Remark: 4.7
The intersection of two \((\lambda, \mu)\)-multi antifuzzy subgroups of a group \(G \) need not be a \((\lambda, \mu)\)-MAFSG of the group \(G \).

Proof:
Consider the Klein’s four group \(G = \{a, b, \bar{a}, \bar{b}\} \), where \(a^2 = e = b^2 \) and \(ba = ab \).
Let \(\forall i \leq 4 \), \(\forall s_i \in [0,1]^k \) such that
\(r_0 \leq r_1 \leq \ldots \leq r_5 \) and \(s_0 \leq s_1 \leq r_5 \).
Define \(\lambda_\mu \) – MAFSG \(A_{\langle \lambda_\mu \rangle} \) and \(B_{\langle \lambda_\mu \rangle} \) of dimension \(k \) as follows:
\(A_{\langle \lambda_\mu \rangle} = \{x, A_{\langle \lambda_\mu \rangle}(x) \in G \} \)
\(B_{\langle \lambda_\mu \rangle} = \{x, B_{\langle \lambda_\mu \rangle}(x) \in G \} \),
where \(A_{\langle \lambda_\mu \rangle}(e) = r_0 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\langle \lambda_\mu \rangle}(a) = r_3 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\langle \lambda_\mu \rangle}(b) = r_4 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\langle \lambda_\mu \rangle}(ab) = r_0 \) \((1 - \lambda_\mu) \vee (1 - \mu)\).

Clearly \((\lambda_\mu)\) and \(B_{\langle \lambda_\mu \rangle} \) are \((\lambda, \mu)\)-multi anti fuzzy subgroups of \(G \).

Now \(A_{\langle \lambda_\mu \rangle} \cap B_{\langle \lambda_\mu \rangle} = \{x, A_{\langle \lambda_\mu \rangle}(x) \in G \} \), where
\((A_{\lambda_\mu}(\langle \lambda_\mu \rangle, B_{\lambda_\mu}(\langle \lambda_\mu \rangle)) = \min\{A_{\lambda_\mu}(\langle \lambda_\mu \rangle, B_{\lambda_\mu}(\langle \lambda_\mu \rangle)\} \)

\((\lambda_\mu) \cap B_{\lambda_\mu}(\langle \lambda_\mu \rangle)(e) = r_0 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\lambda_\mu}(\langle \lambda_\mu \rangle)(a) = r_3 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\lambda_\mu}(\langle \lambda_\mu \rangle)(b) = r_4 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\lambda_\mu}(\langle \lambda_\mu \rangle)(ab) = r_0 \) \((1 - \lambda_\mu) \vee (1 - \mu)\).

Remark: 4.7
The intersection of two \((\lambda, \mu)\)-multi antifuzzy subgroups of a group \(G \) need not be a \((\lambda, \mu)\)-MAFSG of the group \(G \).

Proof:
Consider the Klein’s four group \(G = \{e, a, b, \bar{a}, \bar{b}\} \), where \(a^2 = e = b^2 \) and \(ba = ab \).
Let \(\forall i \leq 4 \), \(\forall s_i \in [0,1]^k \) such that
\(r_0 \leq r_1 \leq \ldots \leq r_5 \) and \(s_0 \leq s_1 \leq s_6 \).
Define \(\lambda_\mu \) – MAFSG \(A_{\lambda_\mu} \) and \(B_{\lambda_\mu} \) of dimension \(k \) as follows:
\(A_{\lambda_\mu} = \{x, A_{\lambda_\mu}(x) \in G \} \)
\(B_{\lambda_\mu} = \{x, B_{\lambda_\mu}(x) \in G \} \),
where \(A_{\lambda_\mu}(e) = r_0 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\lambda_\mu}(a) = r_3 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\lambda_\mu}(b) = r_4 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\lambda_\mu}(ab) = r_0 \) \((1 - \lambda_\mu) \vee (1 - \mu)\).

Clearly \((\lambda_\mu)\) and \(B_{\lambda_\mu} \) are \((\lambda, \mu)\)-multi anti fuzzy subgroups of \(G \).

Now \(A_{\lambda_\mu} \cap B_{\lambda_\mu} = \{x, A_{\lambda_\mu}(x) \in G \} \), where
\((A_{\lambda_\mu}(\lambda_\mu), B_{\lambda_\mu}(\lambda_\mu)) = \min\{A_{\lambda_\mu}(\lambda_\mu), B_{\lambda_\mu}(\lambda_\mu)\} \)

\((\lambda_\mu) \cap B_{\lambda_\mu}(\lambda_\mu)(e) = r_0 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\lambda_\mu}(\lambda_\mu)(a) = r_3 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\lambda_\mu}(\lambda_\mu)(b) = r_4 \) \((1 - \lambda_\mu) \vee (1 - \mu)\), \(A_{\lambda_\mu}(\lambda_\mu)(ab) = r_0 \) \((1 - \lambda_\mu) \vee (1 - \mu)\).

Remark: 4.7
The intersection of two \((\lambda, \mu)\)-multi antifuzzy subgroups of a group \(G \) need not be a \((\lambda, \mu)\)-MAFSG of the group \(G \).
Since \([e, a, b]\) is not a subgroup of \(G\), \([A^{(1)}_{\lambda}] \cup B^{(2)}_{\mu}\) is not a subgroup of \(G\). Hence \([A^{(1)}_{\lambda}] \cup B^{(2)}_{\mu}\) is not a subgroup of \(G\) and there fore \([A^{(1)}_{\lambda}] \cup B^{(2)}_{\mu}\) is not a \((\lambda, \mu)\)-MAFSG of the group \(G\).

Example: 4.8

There are two cases needed to clarify the previous theorem 3.7 and remark.

Case (i): Consider the abelian group \(G = \{e, a, b, c\}\) with usual multiplication such that \(a^2 = e = b^2\) and \(ab = ba\).

Let \(A^{(1)}_{\lambda} = \{e, 0.3 A (1 - \lambda_1) V (1 - \mu_1), 0.2 A (1 - \lambda_2) V (1 - \mu_2)\}, a, 0.5 A (1 - \lambda_1) V (1 - \mu_1), 0.6 A (1 - \lambda_2) V (1 - \mu_2)\}, <b, 0.6 A (1 - \lambda_1) V (1 - \mu_1), 0.6 A (1 - \lambda_2) V (1 - \mu_2)\}\) and \(B^{(2)}_{\mu} = \{e, 0.2 A (1 - \lambda_1) V (1 - \mu_1), 0.3 A (1 - \lambda_2) V (1 - \mu_2)\}, a, 0.7 A (1 - \lambda_1) V (1 - \mu_1), 0.8 A (1 - \lambda_2) V (1 - \mu_2)\}\) and \(A^{(1)}_{\lambda} \cup B^{(2)}_{\mu} = \{e, 0.3 A (1 - \lambda_1) V (1 - \mu_1), 0.3 A (1 - \lambda_2) V (1 - \mu_2)\}, a, 0.5 A (1 - \lambda_1) V (1 - \mu_1), 0.6 A (1 - \lambda_2) V (1 - \mu_2)\}\) and \(A^{(1)}_{\lambda} \cap B^{(2)}_{\mu} = \{e, 0.2 A (1 - \lambda_1) V (1 - \mu_1), 0.2 A (1 - \lambda_2) V (1 - \mu_2)\}, <a, 0.4 A (1 - \lambda_1) V (1 - \mu_1), 0.6 A (1 - \lambda_2) V (1 - \mu_2)\}\) be two \((\lambda, \mu)\)-MAFSs having dimension two of \(G\). Clearly \((\lambda)\) and \(B^{(2)}_{\mu}\) are \((\lambda, \mu)\)-MAFSGs of \(G\).

Then \(A^{(1)}_{\lambda} \cup B^{(2)}_{\mu}\) be a \((\lambda, \mu)\) \(-\) MAFS of \(G\) and \(A^{(1)}_{\lambda} \cap B^{(2)}_{\mu}\) is not a \((\lambda, \mu)\)-MAFSG of \(G\). Hence \(ca(i)\).

Case (ii): Consider the abelian group \(G = \{e, a, b, ab\}\) with usual multiplication such that \(a^2 = e = b^2\) and \(ab = ba\).

Let \(A^{(1)}_{\lambda} = \{e, 0.3 A (1 - \lambda_1) V (1 - \mu_1), 0.1 A (1 - \lambda_2) V (1 - \mu_2)\}, <a, 0.1 A (1 - \lambda_1) V (1 - \mu_1), 0.4 A (1 - \lambda_2) V (1 - \mu_2)\}\) and \(B^{(2)}_{\mu} = \{e, 0.2 A (1 - \lambda_1) V (1 - \mu_1), 0.2 A (1 - \lambda_2) V (1 - \mu_2)\}, <a, 0.4 A (1 - \lambda_1) V (1 - \mu_1), 0.6 A (1 - \lambda_2) V (1 - \mu_2)\}\) be two \((\lambda, \mu)\)-MAFSs having dimension two of \(G\). Clearly \((\lambda)\) and \(B^{(2)}_{\mu}\) are \((\lambda, \mu)\)-MAFSGs of \(G\).

Then \(A^{(1)}_{\lambda} \cup B^{(2)}_{\mu}\) be a \((\lambda, \mu)\) \(-\) MAFSG of \(G\). Let \(G\) be a group and \((\lambda)\) be a \((\lambda, \mu)\)-MAFSG of \(G\). Let \(x \in G\) be a fixed element. Then the set \(A^{(1)}_{\lambda}(x) = A^{(1)}_{\lambda}(x^{-1})\) of all \((\lambda, \mu)\)-multi anti fuzzy left coset of \(G\) determined by \(A^{(1)}_{\lambda}\) and \(x\).

Similarly , the set \(A^{(1)}_{\lambda}(g) = A^{(1)}_{\lambda}(g^{-1}), \forall g \in G\) is called the \((\lambda, \mu)\)-multi anti fuzzy right coset of \(G\) determined by \(A^{(1)}_{\lambda}\) and \(x\).

Remark: 5.2

It is clear that if \((\lambda)\) is a \((\lambda, \mu)\)-multi anti fuzzy normal subgroup of \(G\), then \((\lambda, \mu)\)-multi anti fuzzy left coset and the \((\lambda, \mu)\)-multi anti fuzzy right coset of \(A^{(1)}_{\lambda}\) on \(G\) coincides and in this case, we simply call it as \((\lambda, \mu)\)-multi anti fuzzy coset.

Example: 5.3

Let \(G\) be a group. Then \(A^{(1)}_{\lambda} = \{x, A^{(1)}_{\lambda}(x) : x \in G/A^{(1)}_{\lambda}\} = A^{(1)}_{\lambda}(e)\} is a \((\lambda, \mu)\)-multi anti fuzzy normal subgroup of \(G\).

Theorem: 5.4

Let \((\lambda)\) be a \((\lambda, \mu)\)-multi anti fuzzy subgroup of \(G\) and \(x\) be any fixed element of \(G\). Then the following holds:

(i) \(x[A^{(1)}_{\lambda}(x)]_{\lambda} = x A^{(1)}_{\lambda}(x)_{\lambda}\)
(ii) \([A^{\lambda,\mu}]_\alpha x = \{[x,\mu]_\alpha\}, \forall \alpha \in [0,1]^k\) with \(0 \leq \alpha_i \leq 1, \forall i.

Proof:

(i) \([x \cdot A^{[k,\mu]}]_\alpha = \{g \in G : A^{[k,\mu]}(x \cdot g) \leq \alpha\} \) with \(0 \leq \alpha_i \leq 1, \forall i.\) Also \(x \cdot A^{[k,\mu]}_\alpha = x\{y \in G : \lambda(y) \leq \alpha_i\} = \{xy \in G : A^{[k,\mu]}(y) \leq \alpha\} \)

Put \(xy = g \Rightarrow y = x^{-1}g.\) Then (1) can be written as,

\(x \cdot A^{[k,\mu]}_\alpha = \{g \in G : A^{[k,\mu]}(x^{-1}g) \leq \alpha\} = \{g \in G : x \cdot A^{[k,\mu]}(g) \leq \alpha\} = [x \cdot A^{[k,\mu]}]_\alpha \)

Therefore, \([A^{[k,\mu]}]_\alpha \in [A^{[k,\mu]}]_\alpha, \forall \alpha \in [0,1]^k \) with \(0 \leq \alpha_i \leq 1, \forall i.\)

(ii) Now \([A^{[k,\mu]}]_\alpha = \{g \in G : A^{[k,\mu]}(g) \leq \alpha\} \) with \(0 \leq \alpha_i \leq 1, \forall i.\) Also \([A^{[k,\mu]}]_\alpha x = \{y \in G : A^{[k,\mu]}(y) \leq \alpha \leq \beta\}x = \{yx \in G : A^{[k,\mu]}(yx) \leq \alpha\} \)

Set \(yx = g \Rightarrow y = gx^{-1}.\) Then (2) can be written as \([A^{[k,\mu]}]_\alpha x = \{g \in G : A^{[k,\mu]}(g) \leq \alpha\} = \{g \in G : A^{[k,\mu]}(x \cdot g) \geq \alpha\} = [A^{[k,\mu]}]_\alpha \)

Therefore, \([A^{[k,\mu]}]_\alpha x = [A^{[k,\mu]}]_\alpha, \forall \alpha \in [0,1]^k \) with \(0 \leq \alpha_i \leq 1, \forall i.\)

Homomorphisms of \((\lambda, \mu)\) – Multi fuzzy subgroup

In this section, we shall prove some theorems on \((\lambda, \mu)\) – MAFSG’s of a group byhomomorphism.

Preposition: 6.1

Let \(f: X \rightarrow Y\) be an onto map. If \((\lambda, \mu)\) and \((B^{[k,\mu]}_\alpha)\) are two \((\lambda, \mu)\)–multi anti fuzzy sets of multifuzzy sets A and B with dimension k of X and Y respectively, then the following hold:

(i) \(f(A^{[k,\mu]}_\alpha) \subseteq \{f(A^{[k,\mu]}_\alpha)\}_\alpha \)

(ii) \(f^{-1}(B^{[k,\mu]}_\alpha) = \{f^{-1}(B^{[k,\mu]}_\alpha)\}_\alpha, \forall \alpha \in [0,1]^k \) with \(0 \leq \alpha_i \leq 1, \forall i.\)

Proof: (i) Let \(y \in f(A^{[k,\mu]}_\alpha)\). Then there exist an element \(x \in [A^{[k,\mu]}_\alpha] \) such that \(f(x) = y\). Then we have \([x,\mu]_\alpha \leq \alpha,\)

Since \(x \in [A^{[k,\mu]}_\alpha] \)
\(\Rightarrow [x,\mu]_\alpha \leq \alpha \)
\(\Rightarrow \min[A^{[k,\mu]}_\alpha](x) \leq \alpha \)
\(\Rightarrow \min[A^{[k,\mu]}_\alpha](x) \leq \alpha \)
\(\Rightarrow f(A^{[k,\mu]}_\alpha) \subseteq \{f(A^{[k,\mu]}_\alpha)\}_\alpha \)

Therefore, \((A^{[k,\mu]}_\alpha) \subseteq \{f(A^{[k,\mu]}_\alpha)\}_\alpha, \forall \alpha \in [0,1]^k \) with \(0 \leq \alpha_i \leq 1, \forall i.\)

(ii) Let \(x \in [f^{-1}(B^{[k,\mu]}_\alpha)] \Rightarrow [x \in X : f^{-1}(B^{[k,\mu]}_\alpha)(x) \leq \alpha \)

\[- [x \in X : f^{-1}(B^{[k,\mu]}_\alpha)(x) \leq \alpha] \), \forall i.\)
\[- [x \in X : f^{-1}(B^{[k,\mu]}_\alpha)(x) \leq \alpha] \), \forall i.\)
\[- [x \in X : f^{-1}(B^{[k,\mu]}_\alpha)(x) \leq \alpha] \), \forall i.\)
\[- [x \in X : f^{-1}(B^{[k,\mu]}_\alpha)(x) \leq \alpha] \), \forall i.\)
\[- [x \in X : f^{-1}(B^{[k,\mu]}_\alpha)(x) \leq \alpha] \)

Theorem: 6.2

Let \(f: G_1 \rightarrow G_2\) be an onto homomorphism and if \((\lambda, \mu)\) is a \((\lambda, \mu)\)–MAFSG of G1, then

\((\lambda, \mu)\) is a \((\lambda, \mu)\)–MAFSG of group G2.

Proof:

By theorem 4.4, it is enough to prove that each \((\alpha, \beta)\) – lower cuts \([\lambda, \mu]_\alpha\) is a subgroup of \(G_2, \forall \alpha \in [0,1]^k \) with \(0 \leq \alpha_i \leq 1, \forall i.\). Let \(y_1, y_2 \in [\lambda, \mu]_\alpha\). \(\exists (\alpha_i, \mu_i) \)

Then \((\lambda, \mu)(y_1) \leq \alpha, \) and \(f(A^{[k,\mu]}_\alpha)(y_2) \leq \alpha \)
\(\Rightarrow (A^{[k,\mu]}_\alpha)(y_1) \leq \alpha, \) and \(f(A^{[k,\mu]}_\alpha)(y_2) \leq \alpha, \forall i \)
By the proposition 6.1(i), we have \(f((A^{(i)}_{\lambda,\mu})_a) \subseteq f(A^{(i)}_{\lambda,\mu})_a \), \(\forall A^{(i)}_{\lambda,\mu} \in (\lambda, \mu) - MAFSG(G_1) \).

Since \(f \) is onto, there exists some \(x_1 \) and \(x_2 \) in \(G_1 \) such that \(f(x_1) = y_1 \) and \(f(x_2) = y_2 \). Therefore, (1) can be written as \(f(A^{(i)}_{\lambda,\mu})((x_1)) \leq \alpha, \text{ and } f(A^{(i)}_{\lambda,\mu})((x_2)) \leq \alpha, \forall i \).

\(\Rightarrow A^{(i)}_{\lambda,\mu}(x_1) \leq f(A^{(i)}_{\lambda,\mu})(f(x_1)) \leq \alpha, \text{ and } A^{(i)}_{\lambda,\mu}(x_2) \leq f(A^{(i)}_{\lambda,\mu})(f(x_2)) \leq \alpha, \forall i.\)

\(\Rightarrow A^{(i)}_{\lambda,\mu}(x_1) \leq \alpha, \text{ and } A^{(i)}_{\lambda,\mu}(x_2) \leq \alpha, \forall i.\)

\(\Rightarrow \max\{A^{(i)}_{\lambda,\mu}(x_1), A^{(i)}_{\lambda,\mu}(x_2)\} \leq \alpha.\)

\(A^{(i)}_{\lambda,\mu}(x_2^{-1}) \leq \max\{A^{(i)}_{\lambda,\mu}(x_1), A^{(i)}_{\lambda,\mu}(x_2)\}, \text{ since } A^{(i)}_{\lambda,\mu} \in (\lambda, \mu) - MAFSG(G_1).\)

\(\Rightarrow (\lambda, \mu)(x_1x_2^{-1}) \leq \alpha \)

\(\Rightarrow x_1x_2^{-1} \in [A^{(i)}_{\lambda,\mu}], \Rightarrow f(x_1x_2^{-1}) \in f([A^{(i)}_{\lambda,\mu}]) \subseteq [f(A^{(i)}_{\lambda,\mu})]_a \)

\(\Rightarrow f(x_1)f(x_2^{-1}) \in [f(A^{(i)}_{\lambda,\mu})] \Rightarrow f(x_1)f(x_2^{-1}) \in [f(A^{(i)}_{\lambda,\mu})] \Rightarrow y_1y_2^{-1} \in [f(A^{(i)}_{\lambda,\mu})]_a \)

\(\Rightarrow [f(A^{(i)}_{\lambda,\mu})]_a \text{ is a subgroup of } G_2, \forall \alpha \in [0,1] \Rightarrow f(A^{(i)}_{\lambda,\mu}) \in (\lambda, \mu) - MAFSG(G_2).\)

Corollary: 6.3

If \(f: G_1 \rightarrow G_2 \) be a homomorphism of a group \(G_1 \) onto a group \(G_2 \) and \(\{ A^{(i)}_{\lambda,\mu} : i \in I \} \) be a family of \((\lambda, \mu) - MAFSGs \) of \(G_1 \), then \(f(U A^{(i)}_{\lambda,\mu}) \) is an \((\lambda, \mu) - MAFSG \) of \(G_2 \).

Theorem: 6.4

Let \(f: G_1 \rightarrow G_2 \) be a homomorphism of a group \(G_1 \) into a group \(G_2 \). If \(A^{(i)}_{\lambda,\mu} \) is an \((\lambda, \mu) - MAFSG \) of \(G_2 \), then \(f^{-1}(B^{(i)}_{\lambda,\mu}) \) is also a \((\lambda, \mu) - MAFSG \) of \(G_1 \).

Proof:

By theorem 4.4, it is enough to prove that \(f^{-1}(B^{(i)}_{\lambda,\mu}) \) is a subgroup of \(G_1 \), with \(0 \leq \alpha, \leq 1, \forall i.\)

Let \(x_1, x_2 \in [f^{-1}(B^{(i)}_{\lambda,\mu})]_a \). Then \(f^{-1}(B^{(i)}_{\lambda,\mu})(x_1) \leq \alpha \) and \(f^{-1}(B^{(i)}_{\lambda,\mu})(x_2) \leq \alpha \Rightarrow B^{(i)}_{\lambda,\mu}(f(x_1)) \leq \alpha \) and \(B^{(i)}_{\lambda,\mu}(f(x_2)) \leq \alpha \)

\(\Rightarrow \max\{B^{(i)}_{\lambda,\mu}(f(x_1)), B^{(i)}_{\lambda,\mu}(f(x_2))\} \leq \alpha \)

\(B^{(i)}_{\lambda,\mu}(f(x_1))x_2^{-1} \leq \max\{B^{(i)}_{\lambda,\mu}(f(x_1)), B^{(i)}_{\lambda,\mu}(f(x_2))\} \leq \alpha, \text{ since } B^{(i)}_{\lambda,\mu} \in (\lambda, \mu) - MAFSG(G_2).\)

\(\Rightarrow f(x_1)f(x_2^{-1}) \in [B^{(i)}_{\lambda,\mu} \Rightarrow f(x_1)x_2^{-1} \in [B^{(i)}_{\lambda,\mu}], \text{ since } f \text{ is homomorphism}.\)

\(\Rightarrow x_1x_2^{-1} \in f^{-1}([B^{(i)}_{\lambda,\mu}]_a) = [f^{-1}(B^{(i)}_{\lambda,\mu})]_a, \text{ by the proposition 6.1(ii)}.\)

\(\Rightarrow x_1x_2^{-1} \in [f^{-1}(B^{(i)}_{\lambda,\mu})]_a \Rightarrow [f^{-1}(B^{(i)}_{\lambda,\mu})]_a \text{ is a subgroup of } G_1.\)

\(\Rightarrow f^{-1}(B^{(i)}_{\lambda,\mu}) \text{ is a } (\lambda, \mu) - MAFSG \text{ of } G_1.\)

Theorem: 6.5

Let \(f: G_1 \rightarrow G_2 \) be a surjective homomorphism and if \(A^{(i)}_{\lambda,\mu} \) is a \((\lambda, \mu) - MAFSG \) of a group \(G_1 \), then \(f(A^{(i)}_{\lambda,\mu}) \) is also a \((\lambda, \mu) - MAFNSG \) of a group \(G_2 \).

Proof:

Let \(g_2 \in G_2 \) and \(y \in (A^{(i)}_{\lambda,\mu}). \) Since \(f \) is surjective, there exists \(g_1 \in G_1 \) and \(x \in (A^{(i)}_{\lambda,\mu}). \) such that \(f(x) = y \) and \(f(g_1) = g_2. \)

Also, since \(A^{(i)}_{\lambda,\mu} \) is a \((\lambda, \mu) - MAFNSG \) of \(G_1, A^{(i)}_{\lambda,\mu}(g_1^{-1}xg_1) = A^{(i)}_{\lambda,\mu}(x), \forall x \in A^{(i)}_{\lambda,\mu} \) and \(g_1 \in G_1.\)

Now consider, \(f(A^{(i)}_{\lambda,\mu})(g_1^{-1}xg_1) = f(A^{(i)}_{\lambda,\mu})(f(g_1^{-1}xg_1)) = f(A^{(i)}_{\lambda,\mu})(y) \), since \(f \) is a homomorphism, where \(y = f(g_1^{-1}xg_1) = g_2^{-1}yg_2 = \min\{A^{(i)}_{\lambda,\mu}(x) : x = y \text{ for } x \in G_1\} = \min\{A^{(i)}_{\lambda,\mu}(x) : f(g_1^{-1}xg_1) = y \} = \min\{A^{(i)}_{\lambda,\mu}(x) : f(g_1^{-1}xg_1) = y \} = g_1^{-1}yg_2 \text{ for } x \in A^{(i)}_{\lambda,\mu}, g_1 \in G_1 = \min\{A^{(i)}_{\lambda,\mu}(x) : f(g_1^{-1}xg_1) = y \} = g_1^{-1}yg_2 \text{ for } x \in A^{(i)}_{\lambda,\mu}, g_1 \in G_1 = \min\{A^{(i)}_{\lambda,\mu}(x) : g_2^{-1}yg_2 = g_2^{-1}yg_2 \text{ for } x \in G_1\} = \min\{A^{(i)}_{\lambda,\mu}(x) : f(x) = y \text{ for } x \in G_1\} = f(A^{(i)}_{\lambda,\mu}(y)). \) Hence \(A^{(i)}_{\lambda,\mu} \) is a \((\lambda, \mu) - MAFNSG \) of \(G_2.\)

CONCLUSION

In the theory of fuzzy sets, the level subsets are vital role for its development. Similarly, the \((\lambda, \mu) - \text{mutli fuzzy subgroups are very important role for the development of the theory of multi fuzzy subgroup of a group. In this paper an attempt has been made to study some algebraic natures of (\lambda, \mu) - \text{ multi anti fuzzy subgroups.} \)
REFERENCES

Visit IJSRTM at https://mgesjournals.com/ijsrtm/