Main Article Content

Abstract

The development of nanotechnology is making the interest of researchers towards the synthesis of nanoparticles for the bioapplication. Metal oxides such as ZnO have received increasing attention as antibacterial materials in recent years because of their stability under harsh processing conditions, and also because they are generally regarded as safe materials for human beings and animals. Zinc activates 300 enzymes, and it plays a role in many other phenomena like growth, membrane stability, bone mineralization, tissue growth, and repair, wound healing and cell signalling.


Many studies have shown that ZnO nanoparticles have enhanced antibacterial activity. Use of plant and plant materials for the synthesis of Zinc nanoparticles is relatively new and exciting research field. Various plants were used for the synthesis of nanoparticles using a green synthesis method.


Nanoparticles were synthesized from all the parts of the plant separately like stem, flower, leaf, latex, root, peel, stem bark and fruits. The prepared nanoparticles of Zinc oxide were characterized by using XRD, FTIR, UV-VIS Spectroscopy, EDAX, Particle size analyzer, TGA, and SEM.


The objective of this review was to report on the synthesis of Zinc oxide nanoparticles by using different plant extracts and their significance in different fields.

Keywords

Nanotechnology ZnO nanoparticles Green synthesis Plant extracts Characterization.

Article Details

How to Cite
Lakshmi, S. J., Bai R S, R., H, S., & Nidoni, U. kumar. (2017). A REVIEW STUDY OF ZINC OXIDE NANOPARTICLES SYNTHESIS FROM PLANT EXTRACTS. Green Chemistry & Technology Letters, 3(2), 26–37. https://doi.org/10.18510/gctl.2017.321

References

  1. Amrita, R., Reena, S. L., Mohammad, J. and Kapil, L., 2015, Antibacterial activity of Zinc oxide nanoparticles prepared from Brassica oleraceaeleaves extract. Int. J. Adv. Res., 3(11): 322-328.
  2. Anandh, B., Muthuvel, A. and Emayavaramban, M., 2014, Bio synthesis and characterization of silver nanoparticles using Lagenariasiceraria leaf extract and their antibacterial activity. Int. Lett. Chem. Phys. Astron., 19(1): 35-45.
  3. https://doi.org/10.18052/www.scipress.com/ILCPA.38.35 DOI: https://doi.org/10.18052/www.scipress.com/ILCPA.38.35
  4. Anbukkarasi, V., Srinivasan, R. and Elangovan, N., 2015, Antimicrobial activity of green synthesized Zinc oxide nanoparticles from Emblicaofficinalis. Int. J. Pharm. Sci. Rev. Res., 33(2): 110-115.
  5. Arumugam, N., Sasikumar, K., Malipeddi, H.andSekar, M., 2011, Antifungal activity of Hybanthusenneaspermuson wet clothes. Int. J. Res. Ayurveda. Pharm., 2(4): 1184-1185.
  6. Auld, D. S., 2001, Zinc coordination sphere in biochemical Zinc sites. Biometals., 14(3): 271-313.
  7. https://doi.org/10.1023/A:1012976615056 DOI: https://doi.org/10.1023/A:1012976615056
  8. PMid:11831461
  9. Awwad, A. M., Albiss, B. and Ahmad, A. L., 2014, Green synthesis, characterization and optical properties of Zinc oxide nanosheets using Oleaeuropea leaf extract. Adv. Mat. Lett.,5(9): 520-524.
  10. https://doi.org/10.5185/amlett.2014.5575 DOI: https://doi.org/10.5185/amlett.2014.5575
  11. Bala, N., Saha, S., Chakraborty, M. Maiti, M., Das, S., Basu, R. and Nandy, P., 2015, Green synthesis of Zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv., 5(7): 4993-5003.
  12. https://doi.org/10.1039/C4RA12784F DOI: https://doi.org/10.1039/C4RA12784F
  13. Bangou, M. J., Meda, N. T. R., Thiombiano, A. M. E., Kiendrebeogo, M. and Zeba, B., 2012, Curr. Res. J. Biol. Sci., 4(6): 665-672.
  14. Bhattacharya, R. and Mukherjee, P., 2008, Biological properties of naked nanoparticles. Adv.Drug Deliv. Rev., 60(11): 1289-1306.
  15. https://doi.org/10.1016/j.addr.2008.03.013 DOI: https://doi.org/10.1016/j.addr.2008.03.013
  16. PMid:18501989
  17. Bhumi, G., Raju, Y.R. and Savithramma, N., 2014a, Screening of Zinc oxide nanoparticles for cell prolifertaion synthesized through Adhatodavasicanees. Int. J. Drug Dev. Res., 6 (2): 97-104.
  18. Bhumi, G. and Savithramma, N., 2014b, Biological Synthesis of Zinc oxide Nanoparticles from Catharanthusroseus( I.) G.Don.Leaf extract and validation for antibacterial activity. Int. J. Drug Dev. Res., 6 (1): 208-214.
  19. Biset, J. S., Cruz, J. C., Mirbel, A., Rivera, E. and Canigueral, S. , 2009, J. Ethnopharmacology., 122: 333-362.
  20. https://doi.org/10.1016/j.jep.2008.12.009 DOI: https://doi.org/10.1016/j.jep.2008.12.009
  21. PMid:19146943
  22. Boominathan, R.,Parimaladevi, B., Mandal, S. C. and Ghoshal, S. K., 2004, Anti-inflamattory evaluation of IonidiumsuffruticosumGing. in rats. J. Ethnopharmacol., 91: 367-370.
  23. https://doi.org/10.1016/j.jep.2003.12.019 DOI: https://doi.org/10.1016/j.jep.2003.12.019
  24. PMid:15120463
  25. Broadley, M. R., White, P.J., Hammond, J. P., Zelko, I. and Lux, A., 2007, Zinc in plants. New Phytol., 173(4): 677-702.
  26. https://doi.org/10.1111/j.1469-8137.2007.01996.x DOI: https://doi.org/10.1111/j.1469-8137.2007.01996.x
  27. PMid:17286818
  28. Devi, R. S. and Gayathri, R., 2014, Green synthesis of Zinc oxide nanoparticles by using Hibiscus rosa -sinensis. Int. J. Curr. Eng. Technol., 4(4): 2444-2446.
  29. Dobrucka, R. and Dugaszewska, J., 2015, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifoliumpratense flower extract. Saudi. J. Biol. Sci., 1-7.
  30. Fageria, N. K., Baligar, V. C. and Clark, R. B., 2002, Micronutrients in crop production. Adv. Agron., 77: 189-272.
  31. https://doi.org/10.1016/S0065-2113(02)77015-6 DOI: https://doi.org/10.1016/S0065-2113(02)77015-6
  32. Garima, S., Bhavesh, R., Kasariya, K. R., Sharma, A. R and Singh, R. P., 2011, Biosynthesis of Silver nanoparticles using Ocimum sanctum (Tulasi) leaf extract and screening its antimicrobial activity. J. Nanoparticle. Res., 13(7): 2981-2988.
  33. https://doi.org/10.1007/s11051-010-0193-y DOI: https://doi.org/10.1007/s11051-010-0193-y
  34. Geoprincy, G., Vidhya, S. B. N., Poonguzhali, U., Nagendra, G. N. and Renganathan, S., 2012, A Review on green synthesis of Silver nanoparticles. Asian. J. Pharm. Clin. Res., 6(1): 8-12.
  35. Ghosh, A. K., Banerjee, S., Mullick, H. I. and Banerjee, J., 2011, Zingiberofficinale: A Natural Gold. Int. J.Bioeng. Sci., 2: 283-294.
  36. Gnanasangeetha, D. and Thambavani, S. D., 2013, One pot synthesis of Zinc oxide nanoparticles via chemical and green method. Res. J. Mater. Sci., 1(7): 1-8.
  37. Gnanasangeetha, D. and Thambavani, S. D., 2014, Facile and eco-friendly method for the synthesis of Zinc oxide nanoparticles using Azadirachta and Emblica.Int. J. Pharm. Sci. Res., 5(7): 2866-2873.
  38. Helan, J. C., Anand, R. L. F. A., Namasivayam, S. K. R. and Bharani, R. S. A., 2013, Improved pesticidal activity of fungal metabolite from Nomureaerileyiwith chitosan nanoparticles, ICANMEET, IEEE: 387-390.
  39. Hiremath, S., Vidya, C., Antonyraj, M. A. L., Chandraprabha, M. N., Gandhi, P., Jain, A. and Anand, K., 2013, Biosynthesis of ZnOnano particles assisted by Euphorbia tirucalli (Pencil Cactus). Int. J. Curr. Eng. Technol., (1): 176-179.
  40. Horie, M. and Nishiok, F. K., 2009, Protein adsorption of ultra fine metal oxide and its influence on cytotoxicity toward cultural cell. Chem. Res.Toxicol., 22(3): 543-53.
  41. https://doi.org/10.1021/tx800289z DOI: https://doi.org/10.1021/tx800289z
  42. PMid:19216582
  43. Jain, R., Srivastava, S., Solomon, S., Shrivastava, A.K. and Chandra, A., 2010, Impact of excess Zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharumspp.). ActaPhysiol Plant., 32(5): 979-986.
  44. https://doi.org/10.1007/s11738-010-0487-9 DOI: https://doi.org/10.1007/s11738-010-0487-9
  45. Jaleel, C. A., Gopi, R. and Paneerselvam, R., 2009, Alterations in non-enzymatic antioxidant components of Catharanthusroseusexposed to
  46. paclobutrazol, gibberellic acidand Pseudomonas fluorescens. Plant. Omics. J., 2(1): 30-40.
  47. Jamali, G., Enteshari, S. H. and Hosseini, S. M., 2011, Study effect adjustment drought stress appwering and Seed Productivity in Onion. Int. J. Curr. Microbiol. App. Sci., 3(7): 874-881.
  48. Jayapaul, J., Hodenius, M. and Arns, S., 2011, FMN-coated fluorescent iron oxide nanoparticles for RCP-mediated targeting and labeling of metabolically active cancer and endothelial cells. Biomaterials., 32(25): 5863-5871.
  49. https://doi.org/10.1016/j.biomaterials.2011.04.056 DOI: https://doi.org/10.1016/j.biomaterials.2011.04.056
  50. PMid:21605902
  51. Jeyachandran, R. and Bastin, M., 2013, An efficient protocol for in vitro flowering and fruiting in Micrococcamercurialis (L.) Benth. Int. J. Nat. Appl. Sci., 2(1): 18-22.
  52. Kareru, P. G., Keriko, J. M., Kenji, G. M. and Gachanja, A. N., 2010, Anti-termite and antimicrobial properties of paint made from Thevetiaperuviana (Pers.) Schum. Oil extract. Afr. J. Pharm. Pharmacol., 4(2): 087-089.
  53. Kumar, B., Smita, K., Cumbal, L. and Debut, A., 2014, Green approach for fabrication and applications of Zinc oxide nanoparticles. Bioinorg. Chem. Appl., 1-7.
  54. https://doi.org/10.1155/2014/523869 DOI: https://doi.org/10.1155/2014/523869
  55. PMid:25374484 PMCid:PMC4211296
  56. Lingaraju, K., Naika, H. R., Manjunath, K., Basavaraj, R. B., Nagabhushana, H., Nagaraju, G. and Suresh, D., 2015, Biogenic synthesis of Zinc oxide nanoparticles using Rutagraveolens (L.) and their antibacterial and antioxidant activities. Appl. Nanosci., 6(5): 703-710.
  57. https://doi.org/10.1007/s13204-015-0487-6 DOI: https://doi.org/10.1007/s13204-015-0487-6
  58. Manokari, M. and Shekhawat, M. S., 2015, Biogenesis of Zinc oxide nanoparticles using aqueous extracts of Hemidesmusindicus (L.) R.Br. Int. J. Res. Stud. Microbiol. Biotechnol.,1(1): 20-24.
  59. Manokari, M. and Shekhawat, M. S., 2016b,Biogenesis of Zinc oxide nanoparticles using Couroupitaguianensisaubl. extracts - a green approach. World. Sci. News., 29: 135-145.
  60. Manokari, M., Ravindran, C. P. andShekhawat, M. S., 2016a, Biosynthesis of Zinc oxide nanoparticles using Meliaazedarach L. extracts and their characterization.Int. J. Pharm. Sci. Res., 1(1): 31-36.
  61. Manokari, M., Ravindran, C. P. andShekhawat, M. S., 2016b, Production of Zinc oxide nanoparticles using aqueous extracts of a medicinal plant Micrococcamercurialis (L.) Benth. World. Sci. News., 30: 117-128.
  62. Mishra, V. and Sharma, R., 2015, Green synthesis of Zinc oxide nanoparticles using fresh peels extract of Punicagranatum and its antimicrobial activities. Int. J. Pharm. Res. Health. Sci., 3(3): 694-699.
  63. Mohammed, S., Kasera, P. K. and Shukla, J. K., 2004, Exploited plants of potential medicinal value from the Indian Thar desert. Nat. Prod. Radiance.,3: 69-74.
  64. Mohanpuria, P., Rana, N. K., Yadav, S.K., 2008, Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanoparticle. Res., 10(3): 507-517.
  65. https://doi.org/10.1007/s11051-007-9275-x DOI: https://doi.org/10.1007/s11051-007-9275-x
  66. Noorjahan, C. M., Shahina, S. K. J., Deepika, T. and Rafiq, S., 2015, Green synthesis and characterization of Zinc oxide nanoparticles from Neem (Azadirachta indicia).Int. J. Sci. Eng. Technol. Res., 4(30): 5751-5753.
  67. Pandey, M., Surendra, K., Chikara, Manoj, K. V., Rohit, S. and Thakur, S. G., 2012, Tinosporacordifolia: A climbing shrub in health care management. Int. J. Pharm. Biol. Sci. 3: 612-28.
  68. Parthiban, C. and Sundaramurthy, N., 2015, Biosynthesis, characterization of ZnOnanoparticles by using Pyruspyrifolia leaf extract and their photocatalytic activity.Int. J. Innov. Res. Sci, Eng. Technol., 4(10): 9710-9718.
  69. Patel, D. K., Kumar, R., Prasad, S. K., Sairam, K. and Hemalatha, S., 2011, Antidiabetic and in vitro antioxidant potential of Hybanthusenneaspermus(Linn.) F. Muell in streptozotocin-induced diabetic rats. Asian. Pac. J. Trop. Biomed., 1(4): 316-322.
  70. https://doi.org/10.1016/S2221-1691(11)60051-8 DOI: https://doi.org/10.1016/S2221-1691(11)60051-8
  71. Poovizhi, J. and Krishnaveni, B., 2015, Synthesis, characterization and antimicrobial activity of Zinc oxide nanoparticles synthesized from Calotropisprocera. Int. J. Pharm. Sci. Drug. Res., 7(5): 425-431.
  72. Prabhakar, G., Kamalakar, P., Ashok, V. T. and Shailaja, K., 2015, Eur. J. Pharm. Med. Res., 2: 411-419.
  73. Pradhan, D., Panda, P. K. and Tripathy, G., 2009, National Product Radiance.,8: 37-42.
  74. Prakash, M. J. and Kalyanasundharam, S., 2015, Biosynthesis, characterisation, free radical scavenging activity and anti-bacterial effect of plant-mediated Zinc oxide nanoparticles using Pithecellobiumdulce and Lagenariasiceraria leaf extract. World. Sci. News., 18: 100-117.
  75. Raj, L. F. A. A. and Jayalaksmy, E., 2015b, A biogenic approach for the synthesis and characterization of Zinc oxide nanoparticles produced by Tinosporacordifolia.Int. J. Pharm. Pharm. Sci., 7(8): 384-386.
  76. Raj, L. F. A. A. and Jayalaksmy, E., 2015a, Biosynthesis and characterisation of Zinc oxide nanoparticles using root extract of Zingiberofficinale. Orient. J. Chem., 31(1): 51-56.
  77. https://doi.org/10.13005/ojc/310105 DOI: https://doi.org/10.13005/ojc/310105
  78. Raja, S. K. N., Anand, R. L. F. A., Robin, A. T. G., Helan, J. C. and Arvind, R.S.B., 2014, Optimal synthesis of biocompatible bovine serum nanoparticles- incorporated quercetin (BSA NPS-QT) nano drug conjugate for the controlled release and improved anti oxidative activity. Res. J. Pharm., Biol. Chem. Sci., 5: 478-487.
  79. Ramesh, P., Rajendran, A. and Meenakshisundaram, M., 2014a, Green synthesis of Zinc oxide nanoparticles using flower extract Cassia auriculata. J. NanoSci. NanoTechnol., 1(1): 41-45.
  80. Ramesh, P., Rajendran, A. and Subramanian, A., 2014b, Synthesis of Zinc oxide nanoparticle from fruit of Citrus aurantifolia by chemical and green method. Asian. J. Phytomedicine. Clin. Res., 2(4): 189 - 195.
  81. Rasmussen, J. W., Martinez, E., Louka, P. and Wingett, D. G.,2010, Zinc oxide nanoparticles for selective destruction of tumour cells and potential for Drug delivery applications. Pubmed., 7(9): 1063-1077.
  82. https://doi.org/10.1517/17425247.2010.502560 DOI: https://doi.org/10.1517/17425247.2010.502560
  83. PMid:20716019 PMCid:PMC2924765
  84. Ravindra, P. S., Shukla, V.K., Raghvendra, S. Y., Sharma, P. K., Singh, P. K. and Pandey, A.C., 2011, Biological approach of Zinc oxide nanoparticles formation and its characterization. Adv. Mater. Lett.,2(4): 313-317.
  85. https://doi.org/10.5185/amlett.indias.204 DOI: https://doi.org/10.5185/amlett.indias.204
  86. Ravindran, C. P.,Manokari, M. and Shekhawat, M. S., 2016, Biogenic production of Zinc oxide nanoparticles from aqueous extracts of Durantaerecta L. World. Sci. News., 28: 30-40.
  87. Raut, S., Thorat, P. V. and Thakre, R., 2013, Green synthesis of Zinc oxide (ZnO) nanoparticles using Ocimumtenuiflorum leaves.Int. J. Sci. Res., 4(5): 1225-1228.
  88. Sahoo, S, Kar, D. M., Mohapatra, S., Rout, S. P. and Dash, S. K., 2006, Antibacterial activity of Hybanthusenneaspermusagainst selected urinary tract pathogens. Indian. J. Pharm. Sci. 68(5): 653-655.
  89. https://doi.org/10.4103/0250-474X.29640 DOI: https://doi.org/10.4103/0250-474X.29640
  90. Samat, N. A. and Nor, R. M., 2012, Sol-gel synthesis of Zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceram. Int., 39: 545-548.
  91. https://doi.org/10.1016/j.ceramint.2012.10.132 DOI: https://doi.org/10.1016/j.ceramint.2012.10.132
  92. Sangeetha, G., Rajeshwari, S. and Venkatesh, R., 2011, Green synthesis of Zinc oxide nanoparticles by Aloe barbadensismillerleaf extract: Structure and optical properties. Mater. Res. Bull., 46: 2560- 2566.
  93. https://doi.org/10.1016/j.materresbull.2011.07.046 DOI: https://doi.org/10.1016/j.materresbull.2011.07.046
  94. Satheesh, S. K. and Kottai, M. A., 2012, Comparative evaluation of flavone from Mucunapruriensand coumarin from Ionidiumsuffruticosumfor hypolipidemic activity in rats fed with high Fat diet. Lipids. Health. Dis. 11: 126.
  95. https://doi.org/10.1186/1476-511X-11-126 DOI: https://doi.org/10.1186/1476-511X-11-126
  96. PMid:23031584 PMCid:PMC3506435
  97. Senthilkumar, S. R. and Sivakumar, T., 2014, Green Tea (Camellia Sinensis) Mediated synthesis of Zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci., 6(6): 461-465.
  98. Shah, R. K., Boruah, F. and Parween, N., 2015, Synthesis and characterization of ZnO nanoparticles using leaf extract of Camellia sinesis and evaluation of their antimicrobial efficacy. Int. J. Curr. Microbiol. App. Sci., 4(8): 444-450.
  99. Shanthi, V.and Nelson, R., 2013, Anitbacterial activity of Tinosporacordifolia(Willd) Hook. F. Thomson urinary tract pathogens. Int. J. Curr. Microbiol. App. Sci., 2: 190-4.
  100. Shekhawat, M. S. and Manokari, M., 2014a, Biogenesis of Zinc oxide nanoparticles using MorindapubescensJ.E.Smith extracts and their characterization. Int. J. BioEng. Technol., 5(1): 1-6.
  101. Shekhawat, M. S., Ravindran, C. P. and Manokari, M., 2014b, A biomimetic approach towards synthesis of Zinc oxide nanoparticles using Hybanthusenneaspermus (L.) F.Muell.Trop. Plant. Res., 1(2): 55-59.
  102. Shekhawat, M. S., Ravindran, C. P. and Manokari, M., 2015a, A green approach to synthesize the Zinc oxide nanoparticles using aqueous extracts of Ficusbenghalensis L. Int. J. BioSci. Agr. Technol., 6(1): 1-5.
  103. Shekhawat, M. S., Ravindran, C. P. and Manokari, M., 2015b, An ecofriendly method for the synthesis of Zinc oxide nanoparticles using Lawsoniainermis L. aqueous extracts. Int. J. Innov., 5(1): 1-4.
  104. Sindhura, K. S., Prasad, T. N. V. K. V., Selvam, P. and Hussain, O. M., 2015, Biogenic synthesis of Zinc nanoparticles from Thevetiaperuviana and influence on soil exo-enzyme activity and growth of peanut plants. Int. J. Appl. Pure Sci. Agr., 1(2): 19-32.
  105. Singh, K., Agrawal, K. K., Mishra, V., Uddin, S. M. and Shukla, A., 2012, A review on Thevetiaperuviana. Int. Res. J. Pharm., 3(4): 74-77.
  106. Sivakumar, J., Premkumar, C., Santhanam, P. and Saraswathi, N., 2011, Biosynthesis of Silver nanoparticles using Calotropis gigantean leaf. Afr. J. Basic. Appl. Sci., 3(6): 265-270.
  107. Sugumaran, M., Vetrichelvan, T. and Quine, S. D., 2008, Locomotor activity of leaf extracts of PithecellobiumdulceBenth. Ethanobot. Leaflet.,12: 490-493.
  108. Supraja, N., Prasad, T. N. V. K. V., Krishna, T. G. and David, E., 2015, Synthesis, characterization and evaluation of the antimicrobial efficacy of Boswelliaovalifoliolata stem bark-extract-mediated Zinc oxide nanoparticles. ApplNanosci., 6(4): 581-590.
  109. https://doi.org/10.1007/s13204-015-0472-0 DOI: https://doi.org/10.1007/s13204-015-0472-0
  110. Varghese, E. and George, M., 2015, Green synthesis of Zinc oxide nanoparticles. Int. J. Adv. Res. Sci. Eng., 4(1): 307-314.
  111. Vidya, C., Hiremath, S., Chandraprabha, M. N., Antonyraj, L.M.A., Gopal, I.V., Jain, A. and Bansal, K., 2013, Green synthesis of ZnO nanoparticles by Calotropisgigantea. Int. J. Curr. Eng. Technol., 1: 118-120.
  112. Wang, H. X. and Ng, T. B., 2000, Lagenin, a noble ribosomeinactivating protein with ribonucleolytic activity from bottle gourd Lagenariasiceraria seeds. Life Sci., 67(21): 2631-2638.
  113. https://doi.org/10.1016/S0024-3205(00)00846-8 DOI: https://doi.org/10.1016/S0024-3205(00)00846-8
  114. Zheng, Y., Fu, L., Han, F., Wang, A., Wen, C., Jinping, Y., Yang, J. and Peng, F., 2015, Green biosynthesis and characterization of Zinc oxide nanoparticles using Corymbiacitriodora leaf extract and their photocatalytic activity. Green. Chem. Lett. Rev., 8(2): 59-63.
  115. https://doi.org/10.1080/17518253.2015.1075069 DOI: https://doi.org/10.1080/17518253.2015.1075069