Main Article Content

Abstract

Purpose of Study: The review article explores the kinetic and mechanistic aspects of ruthenium(III) chloride catalysis in the oxidation of organic and inorganic substrates using cerium(IV) as the oxidizing agent in an aqueous acid medium. The reactions have been classified based on the type of metal ion catalyst used. The article highlights that the nature of the mechanism of catalytic oxidation of alcohols by Ce(IV) depends on the specific metal ion catalyst used and the nature of the acidic medium employed.


Methodology: The article sheds light on the purpose and scope of catalytic oxidation of alcohols by Ce(IV). The oxidation of alcohols is an essential reaction in organic chemistry and has numerous applications in the synthesis of various organic compounds. The use of Ce(IV) as an oxidizing agent in the presence of a suitable catalyst can provide an efficient and selective method for the oxidation of alcohols.


Principal Findings: The article discusses the role of ruthenium(III) chloride as a catalyst in the oxidation of alcohols in the presence of Ce(IV) and provides insights into the reaction mechanism. The review also highlights the importance of the nature of the acidic medium used in the reaction and its effect on the reaction kinetics and mechanism.


Implications: Overall, the review article provides a comprehensive overview of the use of ruthenium(III) chloride as a catalyst in the oxidation of alcohols using Ce(IV) as an oxidizing agent in an aqueous acid medium. The insights provided in this article can be valuable for researchers working in the area of organic and inorganic chemistry.

Keywords

Kinetic Ruthenium(III) Chloride Catalysis Ce(IV) Oxidation

Article Details

How to Cite
Yadav, S. C., Gupta, M. K., Srivastav, S., & Tandon, P. K. (2023). Kinetic and mechanistic aspects of cerium(iv) as an oxidant in ruthenium catalysed oxidation reaction: A mini review. Green Chemistry & Technology Letters, 9(2), 01–06. https://doi.org/10.18510/gctl.2023.921

References

  1. Ardon, M.J. Chem. Soc. 1811 (1957).https://doi.org/10.1039/jr9570001811
  2. Benson, D.; "Mechanism by oxidation by metal ions" Elsevier Sciencific Publishing company, Amesterdam (1976).
  3. Blaustein, B.D.; Gryder, J.W. J. Am. Chem. Soc. 79, 540 (1957).https://doi.org/10.1021/ja01560a012
  4. Bugaenko, L.T.; Huaf, kuan Lin, Russ. J. Inorg. Chem. 8, 299 (1963).
  5. Cady, H.H.; Connik, R.F. J. Am. Chem. Soc. 80, 2646 (1958).https://doi.org/10.1021/ja01544a012
  6. Conant, J.B.; Aston, J.G. J. Am. Chem. Soc. 50, 2783 (1928).https://doi.org/10.1021/ja01397a033
  7. Connik, R.F.; Fine, D.A. J. Am. Chem. Soc. 83, 3416 (1961); ibid. 82, 4187 (1960).
  8. https://doi.org/10.1021/ja01477a014
  9. Dorfman, M.K.; Gryder, J.W. Inorg. Chem.1, 799 (1962).https://doi.org/10.1021/ic50004a017
  10. Drummond, A.Y.; Waters, W.A. J. Chem. Soc. 440 (1953), Ibid, 497 (1955).
  11. https://doi.org/10.1039/jr9550000497
  12. Duke, F.R.; Bremer, R.F. J. Am. Chem. Soc. 73, 5179 (1951).https://doi.org/10.1021/ja01155a051
  13. Duke, F.R.; Florist, A.A. J. Am. Chem. Soc. 71, 2790 (1949).https://doi.org/10.1021/ja01176a056
  14. Duke, F.R.; Smith, G.F. Ind. Eng. Chem. Anal. Ed. 12, 201 (1940).
  15. https://doi.org/10.1021/ac50144a008
  16. Griffith, W.P. "The Chemistry of the Rare Platinum Metals", Interscience, New York, p. 141, (1967).
  17. Guilbailt, G. G.; Mac Curdy (Jr) W.H. Phys. Chem. 67, 283 (1963).
  18. Halpern, J.; Jones, B.H.; Kemp, A.L.W. J. Am. Chem. Soc. 83, 4097 (1961).
  19. https://doi.org/10.1021/ja01480a036
  20. Hardwick, T.J.; Robertson, E. Can. J. Chem., 29, 828 (1951).https://doi.org/10.1139/v51-095
  21. Hargreaves, G.; Suteliffe, L.H. Trans. Faraday. Soc., 51, 1105 (1955).https://doi.org/10.1039/tf9555101105
  22. Harrod, J.F.; Coccone, S.; Halpern, J. Can. J. Chem. 39, 1372. (1961).https://doi.org/10.1139/v61-171
  23. Ho, T. L. Synthesis, 347 (1973).https://doi.org/10.1055/s-1973-22210
  24. Ho, T.L. "Organic synthesis with metal compounds "Ed. Mijs, W. I. and De Jonge, C. R. H. Plenum Publishing Corp, P. 569 (1986).
  25. Jones, E.G.; Soper, P.G. J. Chem. Soc., 802 (1935).https://doi.org/10.1039/jr9350000802
  26. Litller, J. S., J.; Chem. Soc. 4135 (1959).
  27. Litller, J.S.; Waters, W.A. J. Chem. Soc. 2757 (1960)
  28. Mac Auley; Brubaker (Jr.) C. H. J. Chem. Soc. (A) 960 (1996).
  29. Marroco, M.; Brilmyer, G. J. Org. Chem. 48, 1487 (1983).https://doi.org/10.1021/jo00157a021
  30. McCurdy, W. H. (Jr); Guilbailt, G. G. J. Phys. Chem., Soc., 64, 1825 (1960).
  31. https://doi.org/10.1021/j100841a006
  32. Meyers, R.J.; Jacoby, R.Z. J. Inorg. Chem. 27, 359 (1901).https://doi.org/10.1002/zaac.19010270131
  33. Mino, G.; Kaizarman, S.; Rasmussen, G. J. Am. Chem. Soc., 81, 1494 (1959).
  34. https://doi.org/10.1021/ja01515a053
  35. Moore, R.L.; Anderson, R.C. J. Am. Chem. Soc. 67, 167 (1945).https://doi.org/10.1021/ja01218a005
  36. Muhammad, S.S.; Rao, K.V., Bull. Chem. Soc. Japan. 36. 943, (1963).https://doi.org/10.1246/bcsj.36.943
  37. Offner, H.G.; Skoog, D.A. Anal. Chem. 37, 1018 (1965).https://doi.org/10.1021/ac60227a018
  38. Ogata, Y.; Tabusi, I. Kagaku no Ryoiki 12, 489 (1958) Chem.; (Prague) 10, 1022 (1958); Chem., Abstr. 54, 1250 g (1960).
  39. Paquatte, D.; Zador, M. Can. J. Chem. 46, 3507 (1968).https://doi.org/10.1139/v68-581
  40. Prakash, A.; Mehrotra, R.N.; Kapoor, R.C., J. Chem. Soc. Dalton Trans. 3781 (1972).
  41. Richardson, W.H. in "Oxidation in Organic Chemistry", Wiberg, K.B. Ed. ., Part A, Academic Press, New York, chap. IV (1965).
  42. Sankhala, P.S.; Mehrotra, R.N. Inorg. Nuclear Chem. 35, 891 (1973).https://doi.org/10.1016/0022-1902(73)80459-2
  43. Sankhala, P.S.; Mehrotra, R.N. J. Inorg. Nuclear Chem. 34, 3781 (1972).https://doi.org/10.1016/0022-1902(72)80025-3
  44. Sant, P.G.; Bhaleand, V.M.; Bhagwat, W.V. Ind. J. Chem. 4, 3781 (1972).
  45. Shankhla, P.S.; Mehrotra, R.N. Indian J. Chem. 14 A 663 (1976). Ibid, 13, 904 (1975); J. Inorg. Nucl. Chem. 5, 891 (1973).
  46. Singh, H.S. "Organic synthesis by oxidation with metal compounds", Ed. Mijs, W. J.; de jonge, C.R.H. Plenum Publishing Corp., p. 633 (1987).
  47. Singh, H.S.; Singh, B.; Gupta, A., Proc. Natl. Acad., Sci. 68(A), IV (1998).
  48. Singh, J.P.; Sirohi J.S., Proceeding at 67th Indian Science Congress (1990).
  49. Singh, M.P.; Ghosh, S. Zeit physic Chem. 207, 198 (1957).https://doi.org/10.1515/zpch-1957-20723
  50. Singh, M.P.; Singh, H.S.; Verma, M.K. J. Phys. Chem. 84, 256 (1980).
  51. https://doi.org/10.1021/j100440a006
  52. Smith, G.F. "Cerate Oxidimetary", G. Frederick Smith Chemical Co. Columbus Ohio (1942).
  53. Song, W. Y.; Li, H. B.; and Hong, M.; Acta Physico chemical Sinika 20, 8. 801 (2004).
  54. https://doi.org/10.3866/PKU.WHXB20040804
  55. Song, W. Yu; Zhao, R.H.; Jiang, Q. M.; WuliHauxueXuebao 21 (8), 929 (2005).
  56. Song, W.; Zhao, R.; Li, Y.; Xu, J. Chem. J. Internet 7, 11, 77 (2007).
  57. Subramanian, N.V.; Balsubramanian, T.R., Ind. J. Chem. 8, 305 (1970).
  58. Syper, L.; Tetrahedron Lett. 4493 (1966).https://doi.org/10.1016/S0040-4039(00)70065-7
  59. Tandon, P.K.; (km) Manibala; Singh, H.S.; Krishna B. Z. Phys. Chemic., Lipzig. 265, 3, 5, 609 (1984): Verma, M.K.; Tandon, P.K.; Singh, M.P. Z. Phys. Chemic, Lipzig 26, 1153 (1985).
  60. https://doi.org/10.1515/zpch-1984-26584
  61. Tandon, P.K.; Gayatri; Sahgal, S.; Srivastava, M.; Singh S.B. Appl. Org. Met. Chem. 21, 135 (2007).
  62. https://doi.org/10.1002/aoc.1169
  63. Tandon, P.K.; Krishna, B. KinetiaiKataliz, 26, 3, 607 (1985).
  64. Tandon, P.K.; Purwar, M.; Singh, S.; Srivastava, N. J. Mol. Catal. A: Chemical, 284, 136 (2008).
  65. https://doi.org/10.1016/j.molcata.2008.01.002
  66. Tandon, P.K.; Sahgal, S.; Gayatri; Purwar M.; Dhusia , M. J. Mol. Catal. A. Chemical, 250, 203 (2006).
  67. https://doi.org/10.1016/j.molcata.2005.12.045
  68. Tandon, P.K.; Sahgal, S.; Singh, A.K.; Gayatri; Puwar, M. J. Mol. Catal. A: Chemical 232, 83 (2005).
  69. https://doi.org/10.1016/j.molcata.2005.01.031
  70. Tandon, P.K.; Sahgal, S.; Singh, A.K.; Kumar, S.; Dhusia, M.; J. Mol. Catal. A: Chemical, 258, 320 (2006).https://doi.org/10.1016/j.molcata.2006.05.060
  71. Tandon, P.K.; Singh, A.K.; Baboo, R.; Dwivedi, P.B. Trans. Metal Chem. 29, 663 (2004).
  72. https://doi.org/10.1007/s11243-004-5162-9
  73. Tandon, P.K.; Singh, A.K.; Sahgal, S.; Kumar, S. J. Mol. Catal. A: Chemical, 282, 136 (2008).
  74. https://doi.org/10.1016/j.molcata.2007.12.001
  75. Trahanovsky, W.S.; Young, L. B., J. Chem. Soc. 5777 (1965).
  76. Vishavandham, C.S.; Rao, G. G. Current Science, 12, 327 (1943).
  77. Wiberg, K.B. "Oxidation in organic chemistry" part A, p. 185, Acadmic press, New York (1965).
  78. Wiberg, K.B. "Oxidation in organic chemistry" part A, p. 406, Acadmic press, New York (1965).
  79. Wiberg, K.B. "Oxidation in Organic chemistry" Part A, P.278, Academic press, New York (1965).
  80. Wibrg, K.B.; Ford, P.C. J. Am. Chem. Soc. 91, 124 (1969).https://doi.org/10.1021/ja01029a026
  81. Wordsworth, E.; Duke, F.R.; Goetz, C.A. Anal. Chem. 29, 1828 (1957). https://doi.org/10.1021/ac60132a046
  82. Young, L.B.; Trahanovsky, W.S. J. Am. Chem. Soc. 91, 5060 (1969). https://doi.org/10.1021/ja01046a021