Main Article Content

Abstract

Purpose of study: The corrosion behavior of mild steel and the inhibition effect of ascorbic acid (an anti-oxidant additive) on aluminum coatings on the mild steel have been studied by weight loss technique under different corrosive medium. 


Methodology: Tap water, 3% Na2CO3 solution, seawater and open-air were chosen as different corrosive medium at ambient temperature range of 35- 400C. Corrosion was recorded using the weight-loss method and the rate was calculated. Later similar mid steel samples were coated with Sodium Bicarbonate paste, aluminum paint with ascorbic acid additive, and aluminum paint without ascorbic acid additive, in similar corroding medium, and the corrosion rate was calculated using the weight-loss method. 


Main Findings: Results show that the percentage of mild steel corrosion was found to be highest in the seawater and lowest in 3% Na2CO3 solution. Sodium Bicarbonate paste reduces the corrosion rate more studies on the corrosion protection was performed by coating the mild steel surface with aluminum paint along with ascorbic acid inhibitor i.e., a green corrosion inhibitor and it was found that the weight loss data is: 85.03 g from 85.05 g, 82.39 g from 82.43 g, no weight loss and 85.73 g from 85.74 g in tap water, seawater, 3% Na2CO3 solution and air medium respectively. Thus, the addition of ascorbic acid inhibitor gave the highest inhibition efficiency for aluminum paint. 

Keywords

mild steel corrosion protection green inhibitor ascorbic acid weight loss method

Article Details

Author Biography

Dr Priy Brat Dwivedi, Caledonian College of Engineering, Oman

Dr Priy is graduated from University of Allahabad. He is engaged in waste water treatment, waste to useful material synthesis, and application of soft computing in Chemical processes. 

How to Cite
AL-Amouri, A. ., & Dwivedi, P. B. (2019). EXPERIMENTAL STUDY ON ASCORBIC ACID ADDITIVE AS GREEN INHIBITOR AGAINST CORROSION OF MILD STEEL. Green Chemistry & Technology Letters, 5(1), 01–09. https://doi.org/10.18510/gctl.2019.511

References

  1. Adejoro I., Ojo F., and Obafemi S. (2015). Corrosion inhibition potentials of ampicillin for mild steel in hydrochloric acid solution, Journal of Taibah University for Science, 9(2), 196–202. https://doi.org/10.1016/j.jtusci.2014.10.002 DOI: https://doi.org/10.1016/j.jtusci.2014.10.002
  2. Ajide O.O., Agara K.W. (2012). Comparative Study of Corrosion Characteristics of MCS and KS7 SS in Selected Acid Media, International Journal of Metallurgical Engineering, 1(1), 7-11. https://doi.org/10.5923/j.ijmee.20120101.02 DOI: https://doi.org/10.5923/j.ijmee.20120101.02
  3. AlAbbas F. M., Williamson C., Bhola S. M., Spear J. R., Olson D. L., Mishra B., (2013). Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API5L X80). International Biodeterioration & Biodegradation, 78, 34-42. https://doi.org/10.1016/j.ibiod.2012.10.014 DOI: https://doi.org/10.1016/j.ibiod.2012.10.014
  4. Alaneme K. K., Olusegun S. J., and Adelowo O. T. (2016). Corrosion inhibition and adsorption mechanism studies of Hunteria umbellata seed husk extracts on mild steel immersed in acidic solutions, Alexandria Engineering Journal, 55(1), 673–681. https://doi.org/10.1016/j.aej.2015.10.009 DOI: https://doi.org/10.1016/j.aej.2015.10.009
  5. Alibakhshi E., Ramezanzadeh M., Bahlakeh G., Ramezanzadeh B., Mahdavian M., Motamedi M. (2018). Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics, Monte Carlo and quantum mechanics study, Journal of Molecular Liquids, 255, 185–198. https://doi.org/10.1016/j.molliq.2018.01.144 DOI: https://doi.org/10.1016/j.molliq.2018.01.144
  6. de Oliveira E. S. D., Pereira R. F. C. , de Melo I. R. , Lima M. A. G. A. , Filho S. L. U. (2017). Corrosion Behavior of API 5L X80 Steel in the Produced Water of Onshore Oil Recovery Facilities, Materials Research, 20(2), 432-439. https://doi.org/10.1590/1980-5373-mr-2016-0954 DOI: https://doi.org/10.1590/1980-5373-mr-2016-0954
  7. Ejieh C. and Ejimofor R. A. (2016). Inhibition of corrosion on mild steel using Piper Guineense (Uziza) extract in sulphuric acid medium of varying pH value, International Journal of Engineering and Applied Sciences, 8(3), 1-7.
  8. Fuchs-Godec R., Pavlović M. G. and Tomić M. V. (2013). The inhibitive effect of Vitamin-C on the corrosive performance of steel in HCl solutions, International Journal of Electrochemical Science, 8, 1511-1519.
  9. Gobara M., Baraka A., Akidb R. and Zorainya M., (2020). Corrosion protection mechanism of Ce4+/organic inhibitor for AA2024 in 3.5% NaCl, Royal Society of Chemistry, 10, 2227–2240. https://doi.org/10.1039/C9RA09552G DOI: https://doi.org/10.1039/C9RA09552G
  10. Gupta N. K. et al. (2016). Schiff's bases derived from L-lysine and aromatic aldehydes as green corrosion inhibitors for mild steel: Experimental and theoretical studies, Journal of Molecular Liquids, 215, 47–57. https://doi.org/10.1016/j.molliq.2015.12.027 DOI: https://doi.org/10.1016/j.molliq.2015.12.027
  11. Gupta R. K., Malviya M., Verma C., Quraishi M. (2017.) Aminoazobenzene and diaminoazobenzene functionalized graphene oxides as novel class of corrosion inhibitors for mild steel: experimental and DFT studies. Materials Chemistry Physics, 198, 360–373. https://doi.org/10.1016/j.matchemphys.2017.06.030 DOI: https://doi.org/10.1016/j.matchemphys.2017.06.030
  12. Karthik G., Sundaravadivelu M. (2016). Studies on the inhibition of mild steel corrosion in hydrochloric acid solution by atenolol drug, Egyptian Journal of Petroleum, 25(2), 183-191. https://doi.org/10.1016/j.ejpe.2015.04.003 DOI: https://doi.org/10.1016/j.ejpe.2015.04.003
  13. Khodair Z. T., Khadom A. A., Jasim H. A. (2019). Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating: preparation, characterization and mathematical views, Journal of Materials Research and Technology, 8(1), 424-435. https://doi.org/10.1016/j.jmrt.2018.03.003 DOI: https://doi.org/10.1016/j.jmrt.2018.03.003
  14. Lu W. –K., Elsenbaumer R. L., Wessling B. (1995). Corrosion protection of mild steel by coatings containing polyaniline, Synthetic Metals, 71(1-3), 2163-2166. https://doi.org/10.1016/0379-6779(94)03204-J DOI: https://doi.org/10.1016/0379-6779(94)03204-J
  15. Mirza M. M., Rasu E., and Desilva A. ( 2016). Influence of nano additives on protective coatings for oil pipe lines of Oman, International Journal of Chemical Engineering and Applications,7(4), 221-225. https://doi.org/10.18178/ijcea.2016.7.4.577 DOI: https://doi.org/10.18178/ijcea.2016.7.4.577
  16. Pradityana A., Sulistijono, Shahab A., Noerochim L., and Susanti D. (2016). Inhibition of Corrosion of Carbon Steel in 3.5% NaCl Solution by Myrmecodia Pendans Extract, International Journal of Corrosion, Article ID 6058286. https://doi.org/10.1155/2016/6058286 DOI: https://doi.org/10.1155/2016/6058286
  17. Pradityana A., Sulistijono, and Shahab A. (2015). The influence of adding bio inhibitor sarang semut (Myrmecodia pendans) to carbon steel API 5L grade B in solution of HCl 1M, Advanced Materials Research, 1123, 187–191. https://doi.org/10.4028/www.scientific.net/AMR.1123.187 DOI: https://doi.org/10.4028/www.scientific.net/AMR.1123.187
  18. Rani B. E. A. and Basu B. B. J. (2012). Green inhibitors for corrosion protection of metals and alloys: an overview, International Journal of Corrosion, Article ID 380217. https://doi.org/10.1155/2012/380217 DOI: https://doi.org/10.1155/2012/380217
  19. Sanni O., Fayomi O. S. I., and Popoola A. P. I. (2019). Eco-friendly inhibitors for corrosion protection of stainless steel: An Overview, Journal of Physics: Conference Series, 1378 042047. https://doi.org/10.1088/1742-6596/1378/4/042047 DOI: https://doi.org/10.1088/1742-6596/1378/4/042047
  20. Singh D. K., Kumar S., Udayabhanu G., and John R. P. (2016). 4(N,N-dimethylamino) benzaldehyde nicotinic hydrazone as corrosion inhibitor for mild steel in 1M HCl solution: An experimental and theoretical study, Journal of Molecular Liquids, 216, 738–746. https://doi.org/10.1016/j.molliq.2016.02.012 DOI: https://doi.org/10.1016/j.molliq.2016.02.012
  21. Umoren S. A. and Solomon M. M. (2017). Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: a review, Journal of Environmental Chemical Engineering, 5(1), 246–273. https://doi.org/10.1016/j.jece.2016.12.001 DOI: https://doi.org/10.1016/j.jece.2016.12.001
  22. Varma R. S. (2014). Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chemistry, 16, 2027–2041. https://doi.org/10.1039/c3gc42640h DOI: https://doi.org/10.1039/c3gc42640h
  23. Walsh F. C., Ottewill G., Barker D. (1993). Corrosion and Protection of Metals: II. Types of Corrosion and Protection Methods, Transactions of the Institute of Metal Finishing, 71(3), 117-120. DOI: https://doi.org/10.1080/00202967.1993.11871002
  24. Yang F., Liu T., Li J., Qiu S. and Zhao H. (2018). Anticorrosive behavior of a zinc-rich epoxy coating containing sulfonated polyaniline in 3.5% NaCl solution, Royal Society of Chemistry, 8, 13237-13247. DOI: https://doi.org/10.1039/C8RA00845K
  25. Yue J., Cao Y. (2015). Corrosion prevention by applied coatings on aluminum alloys in corrosive environments, International Journal of Electrochemical Science, 10, 5222 – 5237.
  26. Zhang F., Tang Y., Cao Z., Jing W., Wu Z., Chen Y. (2012). Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid, Corrosion Science, 61, 1–9. DOI: https://doi.org/10.1016/j.corsci.2012.03.045
  27. Zuo-anXiao, Tang D., Fan J., WeiXiao, Wang D. (2017). Coating titanium on carbon steel by in-situ electrochemical reduction of solid TiO2 layer, Transactions of Nonferrous Metals Society of China, 27(1), 134-140. DOI: https://doi.org/10.1016/S1003-6326(17)60015-3