Main Article Content

Abstract

Purpose: The chemistry society has activated to expand new chemistry that is less destructive to the environment and human health. This approach has extensive interest and designated as green chemistry, environmentally friendly chemistry, clean chemistry, and atom economy.


Methodology: There is advancement toward involved chemistry with the facts and do not prevent the properties of the target compound or the efficacy of particular solvents or reagents. The use of chemistry in a way that maximizes benefits while reducing adverse effects has come to be green chemistry.


Main findings: Reduce the use and formation of harmful products or by-products. Presently maximum pollution to the environment is caused by some chemical industries. So, need to design and develop synthetic methods in such a way that the waste products are lowest and have no effect on the environment and their handy disposal.


Applications of the work: Green chemistry plays a vital role in pharmaceuticals for developing new drugs which are less toxic, more effective with low side effects.


The novelty of the work: The industries performing manufacturing using green synthesis methods to carrying out their productions have positive impacts on environmental sustainability. This review is looking ahead at longer-term challenges and prospects in research, industrial applications, and education.

Keywords

green synthesis pharmaceutical chemistry sustainability atom economy

Article Details

How to Cite
Asif, M. (2021). GREEN SYNTHESIS, GREEN CHEMISTRY, AND ENVIRONMENTAL SUSTAINABILITY: AN OVERVIEW ON RECENT AND FUTURE PERSPECTIVES OF GREEN CHEMISTRY IN PHARMACEUTICALS. Green Chemistry & Technology Letters, 7(1), 18–27. https://doi.org/10.18510/gctl.2021.713

References

  1. Acharya, P.S.G., Vadher, J.A., Acharya, G.D. (2014). A Review on Evaluating Green Manufacturing for Sustainable Development in Foundry Industries. Int. J. Emerg. Technol., 4(1), 232–237.
  2. Adam, D.H., Supriadi, Y.N., Ende, Siregar, Z.M.E. (2020). Green Manufacturing, Green Chemistry And Environmental Sustainability: A Review. Int. J. Sci. & Tech. Res., 9(04), 2209-2211.
  3. Al-Hakkani, M.F., Gouda, G.A., Hassan, S.H.A. (2021). A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications. Heliyon, 7(1), e05806. https://doi.org/10.1016/j.heliyon.2020.e05806, PMid:33490660 PMCid:PMC7809383 DOI: https://doi.org/10.1016/j.heliyon.2020.e05806
  4. Anastas, P.T., Lauren, B.B., Mary, M.K., Tracy, C.W. (2000). The Role of Catalysis in the design, development, and implementation of Green Chemistry. Catalysis Today, 55, 11-22. https://doi.org/10.1016/S0920-5861(99)00222-9 DOI: https://doi.org/10.1016/S0920-5861(99)00222-9
  5. Anastas, P.T., Warner, J.C. (1998). Green Chemistry, Theory and Practice. Oxford, UK: Oxford University Press.
  6. Arora, G., Shrivastava, R., Kumar, P., Bandichhor, R., Krishnamurthy, D., Sharma, R.K., Matharu, A.S., Pandey, J., Rizwan, M. (2021). Recent advances made in the synthesis of small drug molecules for clinical applications: An insight. Curr. Res. Green & Sustainable Chem., 4, 100097. https://doi.org/10.1016/j.crgsc.2021.100097, PMCid:PMC8056884 DOI: https://doi.org/10.1016/j.crgsc.2021.100097
  7. Banik, B.K., Sahoo, B.M., Varaha, B.V., Kumar, R., Panda, K.C., Jena, J., Mahapatra, M.K., Borah, P. (2021). Green Synthetic Approach: An Efficient Eco-Friendly Tool for Synthesis of Biologically Active Oxadiazole Derivatives. Molecules, 26(4), 1163. https://doi.org/10.3390/molecules26041163 DOI: https://doi.org/10.3390/molecules26041163
  8. PMid:33671751 PMCid:PMC7927091
  9. Castilla, I.A., Woods, D.F., Reen, F.J., O’Gara, F. (2018). Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies. Mar. Drugs., 16(7), 227. https://doi.org/10.3390/md16070227, PMid:29973493 PMCid:PMC6071119 DOI: https://doi.org/10.3390/md16070227
  10. Cerminara, I., Chiummiento, L., Funicello, M., Lupattelli, P., Scafato, P., Scorza, F., Superchi, S. (2020). Green Chemistry, Circular Economy and Sustainable Development: An Operational Perspective to Scale Research Results in SMEs Practices. Computational Science and Its Applications–ICCSA 2020. 12255, 206–213. https://doi.org/10.1007/978-3-030-58820-5_16, PMCid:PMC7974230 DOI: https://doi.org/10.1007/978-3-030-58820-5_16
  11. Chen, M., Jeronen, E., Wang, A. (2020). What Lies Behind Teaching and Learning Green Chemistry to Promote Sustainability Education? A Literature Review. Int. J. Environ. Res. Public Health., 17(21), 7876. https://doi.org/10.3390/ijerph17217876, PMid:33121097 PMCid:PMC7663151 DOI: https://doi.org/10.3390/ijerph17217876
  12. Cichosz, S., Masek, A. (2020). Superiority of Cellulose Non-Solvent Chemical Modification over Solvent-Involving Treatment: Solution for Green Chemistry (Part-I). Materials, 13(11): 2552. https://doi.org/10.3390/ma13112552, PMid:32503319 PMCid:PMC7321458 DOI: https://doi.org/10.3390/ma13112552
  13. Crawford, S.E., Hartung, T., Hollert, H., Mathes, B., van Ravenzwaay, B., Steger-Hartmann, T., Studer, C., Krug, H.F. (2017). Green Toxicology: a strategy for sustainable chemical and material development. Environ. Sci. Eur., 29(1), 16. https://doi.org/10.1186/s12302-017-0115-z, PMid:28435767 PMCid:PMC5380705 DOI: https://doi.org/10.1186/s12302-017-0115-z
  14. Crua, A.V., Medina, D., Zhang, B., González, M.U., Huttel, Y., García-Martín, J.M., Cholula-Díaz, J.L., Webster, T.J. (2019). Comparison of cytocompatibility and anticancer properties of traditional and green chemistry-synthesized tellurium nanowires. Int. J. Nanomed., 14, 3155–3176. https://doi.org/10.2147/IJN.S175640, PMid:31118629 PMCid:PMC6501707 DOI: https://doi.org/10.2147/IJN.S175640
  15. de Marco, B.A., Rechelo, B.S, Tótoli, E.G., Kogawa, A.C., Salgado, H.R.N. (2019). Evolution of green chemistry and its multi dimensional impacts: A review. Saudi Pharm. J., 27(1), 1–8. https://doi.org/10.1016/j.jsps.2018.07.011, PMid:30627046 PMCid:PMC6323129 DOI: https://doi.org/10.1016/j.jsps.2018.07.011
  16. de Marco, B.A., Rechelo, B.S., Tótoli, E.G., Kogawa, A.C., Salgado, H.R.N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J., 27(1), 1–8. https://doi.org/10.1016/j.jsps.2018.07.011, PMid:30627046 PMCid:PMC6323129 DOI: https://doi.org/10.1016/j.jsps.2018.07.011
  17. Deif, A.M. (2011). A system model for green manufacturing. J. Clean. Prod., 19(14), 1553–1559. https://doi.org/10.1016/j.jclepro.2011.05.022 DOI: https://doi.org/10.1016/j.jclepro.2011.05.022
  18. Dornfeld, D.A. (2013). Green Manufacturing: Fundamentals and Applications. Springer Science & Business Media.
  19. Draye, M., Chatel, G., Duwald, R. (2020). Ultrasound for Drug Synthesis: A Green Approach. Pharmaceuticals, 13(2), 23. https://doi.org/10.3390/ph13020023, PMid:32024033 PMCid:PMC7168956 DOI: https://doi.org/10.3390/ph13020023
  20. Dwivedi, K.D., Borah, B., Chowhan, L.R. (2019). Ligand Free One-Pot Synthesis of Pyrano[2,3-c]pyrazoles in Water Extract of Banana Peel (WEB): A Green Chemistry Approach. Front. Chem., 7, 944. https://doi.org/10.3389/fchem.2019.00944, PMid:32039156 PMCid:PMC6987396 DOI: https://doi.org/10.3389/fchem.2019.00944
  21. Escobedo, R., Miranda, R., Martínez, J. (2016). Infrared Irradiation: Toward Green Chemistry, a Review. Int. J. Mol. Sci., 17(4), 453. https://doi.org/10.3390/ijms17040453, PMid:27023535 PMCid:PMC4848909 DOI: https://doi.org/10.3390/ijms17040453
  22. Fanelli, F., Parisi, G., Degennaro, L., Luisi, R. (2017). Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis. Beilstein J. Org. Chem., 13, 520–542. https://doi.org/10.3762/bjoc.13.51, PMid:28405232 PMCid:PMC5372749 DOI: https://doi.org/10.3762/bjoc.13.51
  23. Gao, X., Liu, J., Zuo, X., Feng, X., Gao, Y. (2020). Recent advances in synthesis of benzothiazole compounds related to green chemistry. Molecules, 25(7), 1675. https://doi.org/10.3390/molecules25071675, PMid:32260500 PMCid:PMC7181030 DOI: https://doi.org/10.3390/molecules25071675
  24. Geyer, R., Jackson, T. (2004). Supply loops and their constraints: the industrial ecology of recycling and reuse. Calif. Manage. Rev., 46(2), 55–73. https://doi.org/10.2307/41166210 DOI: https://doi.org/10.2307/41166210
  25. http://alliedacademies.com/euro-green-chemistry-2017/2017/events-list/future-trends-in-green chemistry.
  26. Ingrid, M., David, S., Marilyn, G., Joaudimir, C., Johanna, F. (2006). A Greener Approach to Aspirin Synthesis using Microwave Irradiation. J. Chem. Edu., 83, 628. https://doi.org/10.1021/ed083p628 DOI: https://doi.org/10.1021/ed083p628
  27. Ivankovic, A., Talic, S. (2017). Review of 12 Principles of Green Chemistry in Practice. Int. J Suit. & Greenener, 6(3), 39-48. https://doi.org/10.11648/j.ijrse.20170603.12 DOI: https://doi.org/10.11648/j.ijrse.20170603.12
  28. Jahangirian, H, Lemraski, E.G., Rafiee-Moghaddam, R., Webster, T.J. (2018). A review of using green chemistry methods for biomaterials in tissue engineering. Int. J. Nanomed., 13, 5953–5969. https://doi.org/10.2147/IJN.S163399, PMid:30323585 PMCid:PMC6177385 DOI: https://doi.org/10.2147/IJN.S163399
  29. Jahangirian, H., Lemraski, E.G., Webster, T.J., Rafiee-Moghaddam, R., Abdollahi, Y. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomed., 12, 2957–2978. https://doi.org/10.2147/IJN.S127683, PMid:28442906 PMCid:PMC5396976 DOI: https://doi.org/10.2147/IJN.S127683
  30. Jaiswal, S., Kapoor, D., Kumar, A., Sharma. K. (2017). Applications of green chemistry. Int. J. Cybernetics & Informatics, 6(1/2). doi: 10.5121/ijci.2017.6215 127.
  31. Kharissova, Q.V., Kharisov, B.I., González, C.M.O., Méndez, Y.P., López, I. (2019). Greener synthesis of chemical compounds and materials. R. Soc. Open. Sci., 6(11): 191378. https://doi.org/10.1098/rsos.191378, PMid:31827868 PMCid:PMC6894553 DOI: https://doi.org/10.1098/rsos.191378
  32. Kim, S., Hong, S., Ahn, K., Gong, S. (2015). Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment. Environ. Health Toxicol., 30 Suppl, s2015003. https://doi.org/10.5620/eht.s2015003, PMid:26206364 PMCid:PMC4540126 DOI: https://doi.org/10.5620/eht.s2015003
  33. Lasker, G.A., Mellor, K.E., Simcox, N.J. (2019). Green chemistry & chemical stewardship certificate program: a novel, interdisciplinary approach to green chemistry and environmental health education. Green Chem. Lett. Rev., 12(2), 178–186. https://doi.org/10.1080/17518253.2019.1609601 DOI: https://doi.org/10.1080/17518253.2019.1609601
  34. PMid:33014124 PMCid:PMC7529328
  35. Lee, W.J., Goh, P.S., Lau, W.J., Ismail, A.F., Hilal, N. (2021). Green Approaches for Sustainable Development of Liquid Separation Membrane. Membranes, 11(4), 235. https://doi.org/10.3390/membranes11040235, PMid:33806115 PMCid:PMC8064480 DOI: https://doi.org/10.3390/membranes11040235
  36. Manmohan, S., Arjun, S., Khan, S.P., Eram, S., Sachan, N.K. (2012). Green chemistry potential for past, present and future perspectives. Int. J. Res. Pharm., 3(4), 31-36.
  37. Nukman, Y., Farooqi, A., Al-Sultan, O., Alnasser, A.R.A., Bhuiyan, M.S.H. (2017). A Strategic Development of Green Manufacturing Index (GMI) Topology Concerning the Environmental Impacts. Procedia Eng., 184, 370–380. https://doi.org/10.1016/j.proeng.2017.04.107 DOI: https://doi.org/10.1016/j.proeng.2017.04.107
  38. O’Brien, K.P. Myers, J.P. Warner, J. (2009).Green Chemistry: Terminology and Principles. Environ Health Perspect., 117(10), A434. https://doi.org/10.1289/ehp.0900835, PMid:19750079 PMCid:PMC2737033 DOI: https://doi.org/10.1289/ehp.0900835
  39. Pang R., Zhang, X. (2019). Achieving environmental sustainability in manufacture: A 28-year bibliometric cartography of green manufacturing research. J. Clean. Prod., 233, 84–99. https://doi.org/10.1016/j.jclepro.2019.05.303 DOI: https://doi.org/10.1016/j.jclepro.2019.05.303
  40. Patel, M., Patel, H., Mevada, S., Patel, O. (2020). Chemistry goes green: a review on current and future perspectives of pharmaceutical green chemistry. World J. Pharm. & Med. Res., 6(7), 125-131.
  41. Paul, I.D., Bhole, G.P., Chaudhari, J.R. (2014). A Review on Green Manufacturing: It’s Important, Methodology and its Application. Procedia Mater. Sci., 6, 1644–1649. https://doi.org/10.1016/j.mspro.2014.07.149 DOI: https://doi.org/10.1016/j.mspro.2014.07.149
  42. Ragazzi, M., Ghidini, F. (2017). Environmental sustainability of universities: Critical analysis of a green ranking. Energy Procedia, 119, 111–120. https://doi.org/10.1016/j.egypro.2017.07.054 DOI: https://doi.org/10.1016/j.egypro.2017.07.054
  43. Rusinko, C.A. (2007). Green Manufacturing : An Evaluation of Environmentally Sustainable Manufacturing Practices and TheirImpact on Competitive Outcomes. Ieee Trans. Enginering Manag., 54(3), 445–454. https://doi.org/10.1109/TEM.2007.900806 DOI: https://doi.org/10.1109/TEM.2007.900806
  44. Saini, R.R.S., Singh, U.U.R. (2002). Green chemistry: Environment, economics, and competitiveness. Corp. Environ. Strateg., 9(3), 259–266. https://doi.org/10.1016/S1066-7938(02)00068-4 DOI: https://doi.org/10.1016/S1066-7938(02)00068-4
  45. Santi, M., Sancineto, L., Nascimento, V., Azeredo, J.B., Orozco, E.V.M., Andrade, L.H., Gröger, H., Santi, C. (2021). Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. Int. J. Mol. Sci., 22(3), 990. https://doi.org/10.3390/ijms22030990, PMid:33498198 PMCid:PMC7863935 DOI: https://doi.org/10.3390/ijms22030990
  46. Schulte, P.A., McKernan, L.T., Heidel, D.S., Okun, A.H., Dotson, G.S., Lentz, T.J., Geraci, C.L., Heckel, P.E., Branche, C.M. (2013). Occupational safety and health, green chemistry, and sustainability: a review of areas of convergence. Environ. Health., 12, 31. https://doi.org/10.1186/1476-069X-12-31, PMid:23587312 PMCid:PMC3639149 DOI: https://doi.org/10.1186/1476-069X-12-31
  47. Sezen, B., Çankaya, S.Y. (2013). Effects of Green Manufacturing and Eco-innovation on Sustainability Performance. Procedia -Soc. Behav. Sci., 99, 154–163. https://doi.org/10.1016/j.sbspro.2013.10.481 DOI: https://doi.org/10.1016/j.sbspro.2013.10.481
  48. Shah, M., Fawcett, D., Sharma, S, Tripathy, S.K., Poinern, G.E.J. (2015). Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials, 8(11), 7278–7308. https://doi.org/10.3390/ma8115377 DOI: https://doi.org/10.3390/ma8115377
  49. PMid:28793638 PMCid:PMC5458933
  50. Shanghi, R. (2003). The Need For Green Chemistry†:Environt Friendly Alternative. New Delhi: Naroso Publishing House.
  51. Sharma, S.K. Mudhoo, A., Zhang, W. (2011). Chemistry and Engineering, in Green Chemistry for Environmental Sustainability, CRC Press. https://doi.org/10.1201/EBK1439824733 DOI: https://doi.org/10.1201/EBK1439824733
  52. Sindhu, R.K., Verma, A., Sharma, D., Gupta, S. (2017). Applications of green chemistry in pharmaceutical chemistry and day today life. Arch. Med. Pharm. Sci. Res., 1(2), 39-44.
  53. Singh, G., Wakode, S. (2018). Green Chemistry Drift: A Review. Sch. Acad. J. Pharm., 7(6), 274-279. DOI: 10.21276/sajp.2018.7.6.10
  54. Singh, G., Wakode, S. (2018). Green Chemistry Drift: A Review. Sch. Acad. J. Pharm., 7(6), 274-279. doi: 10.21276/sajp.2018.7.6.10
  55. Smita, T., Falfuni, M. (2012). Green chemistry: A tool in pharmaceutical chemistry, NHL. J. Med Sci., 1(1), 7-13.
  56. Tobiszewski, M., Marć, M., Gałuszka, A., Namieśnik, J. (2015). Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules, 20(6), 10928–10946. https://doi.org/10.3390/molecules200610928, PMid:26076112 PMCid:PMC6272361 DOI: https://doi.org/10.3390/molecules200610928
  57. Tucker, J.L. (2006).Green Chemistry, a Pharmaceutical Perspective. Org. Process Res. Develop., 10(2), 315-319. https://doi.org/10.1021/op050227k DOI: https://doi.org/10.1021/op050227k
  58. Ubuoh, E. (2016). Green Chemistry : A Panacea for Environmental Sustainability Agriculture in Global Perspective. Glob. J. Pure Appl. Chem. Res., 4(1), 21–29.
  59. Valavanidis, A., Vlachogianni, T., Fiotakis, K. (2009). Laboratory Experiments of Organic Synthesis and Decomposition of Hazardous Environmental Chemicals Following Green Chemistry Principles. International Conference “Green Chemistry and Sustainable developmentâ€, Thessaloniki.
  60. Wilson, M. P., Schwarzman, M.R. (2009). Toward a New U.S. Chemicals Policy: Rebuilding the Foundation to Advance New Science, Green Chemistry, and Environmental Health. Environ. Health Perspect., 117(8), 1202–1209. https://doi.org/10.1289/ehp.0800404, PMid:19672398 PMCid:PMC2721862 DOI: https://doi.org/10.1289/ehp.0800404
  61. Wojnarowicz, J., Chudoba, T., Lojkowski, W. (2020). A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomat.,10(6), 1086. https://doi.org/10.3390/nano10061086, PMid:32486522 PMCid:PMC7353225 DOI: https://doi.org/10.3390/nano10061086
  62. Wolfson, A., Dlugy, C., Shotland, Y. (2007). Glycerol as a green solvent for high product yields and selectivities. Environ. Chem. Lett., 5, 67-71. https://doi.org/10.1007/s10311-006-0080-z DOI: https://doi.org/10.1007/s10311-006-0080-z
  63. Yogesh, S.S., Ravikumar, V.T., Anthony, N.S., Douglas, L.C. (2001). Applications of green chemistry in the manufacture of oligonucleotide drugs. Pure. Appl. Chem., 73, 175–180. https://doi.org/10.1351/pac200173010175 DOI: https://doi.org/10.1351/pac200173010175