Main Article Content

Abstract

The binding of three Ru(II)-polypyridyl complexes with polyphenols (gallic acid and quercetin) have been studied in aqueous medium at pH 11 by means of absorption spectral technique. The absorption and emission maximum of this complexes are in the range of 451-457 nm and 612-626 nm respectively. The binding constant (Kb) for these reactions are determined from the Benesi-Hildebrand equation using absorption intensity data.

The observed binding constant values are sensitive to the nature of the ligand and the structure of the gallic acid and quercetin. Quercetin binds strongly with Ru(II) complexes than gallic acid owing to the presence of more phenolic –OH groups. Structural effect seems to play a vital role on the binding of the antioxidants with these complexes.

Keywords

Benesi-Hildebrand equation binding constant polyphenols ruthenium (II)-polypyridyl complexes structural effect

Article Details

How to Cite
Raj, G. G. (2016). BINDING OF RUTHENIUM(II)POLYPYRIDYL COMPLEXES WITH POLYPHENOLS IN AQUEOUS MEDIUM. Green Chemistry & Technology Letters, 1(01), 77–81. https://doi.org/10.18510/gctl.2015.1112

References

  1. Masoud, M.S., Hagagg, S.S., Ali, A.E., Nasr, N.M., Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes, Journal of Molecular Structure, (1014), 2012, 17–25. DOI: https://doi.org/10.1016/j.molstruc.2012.01.041
  2. Janeiro, P., Novak, I., Seruga, M. Brett, A.M.O., Electroanalytical oxidation of p-coumaric acid, Anal. Lett., (40), 2007, 3309–3321. DOI: https://doi.org/10.1080/00032710701672822
  3. Dolatabadi, J.E.N., Mokhtarzadeh, A., Ghareghoran, S.M., Dehghan, G., Synthesis, Characterization and Antioxidant Property of Quercetin-Tb(III) Complex, Advanced Pharmaceutical Bulletin, (4), (2), 2014, 101–104.
  4. Lo, K.K.W., Louie, M.W., Zhang, K.Y., Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes, Coord Chem Rev., (254) 2010, 2603–2622 DOI: https://doi.org/10.1016/j.ccr.2010.01.014
  5. Meggers, E., Targeting proteins with metal complexes, Chem Commun., 2009, 1001–1010 DOI: https://doi.org/10.1039/b813568a
  6. Sheikhshoaie, I., Badiei, A., Ghazizadeh, M., Synthesis and characterization of a new poly (amidoamine) dendrimer-like iron (iii) and molybdenum (VI) complexes, Der Chemica Sinica., (3), (1), 2012, 29 –37.
  7. Sabastiyan, A., Suvaikin, M.Y., Synthesis, characterization and antimicrobial activity of 2-(dimethylaminomethyl)isoindoline-1,3-dione and its cobalt(II) and nickel(II) complexes, Advances in Applied Science Research, (3), (1), 2012, 45–50.
  8. Kostova, I., Momekov, G., New zirconium (IV) complexes of coumarins with cytotoxic activity, Eur. J. Med. Chem., (41), (6), 2006, 717–726. DOI: https://doi.org/10.1016/j.ejmech.2006.03.020
  9. Rajeshirke, M., Shah, R., Yadav, P., Purohit, N.V., Synthesis and antioxidant activity of metal (II) complexes of isocoumarin derivatives, Der Pharmacia Sinica., (3), (2), 2012, 239–248.
  10. Maksimoska, J., Feng, L., Harms, K., Yi, C., Kissil, J., Marmorstein, R., Meggers, E., Targeting Large Kinase Active Site with Rigid, Bulky Octahedral Ruthenium Complexes, J Am Chem Soc., (130), 2008, 15764–15765. DOI: https://doi.org/10.1021/ja805555a
  11. Babu. E., Mareeswaran, P.M.,, Singaravadivel, S., Bhuvaneswari, J., Rajagopal, S., A selective, long-lived deep-red emissive ruthenium(II) polypyridine complexes for the detection of BSA, Spectrochimica Acta A, (130), 2014, 553–560. DOI: https://doi.org/10.1016/j.saa.2014.04.060
  12. Perron, N.R., Brumaghim, J.L., A review of the antioxidant mechanisms of polyphenol compounds related to iron binding cell, Biochem Biophys., (53), 2009, 75–100. DOI: https://doi.org/10.1007/s12013-009-9043-x
  13. Farhan, S.A., Study on the interaction of copper (II) complex of morin and its antimicrobial effect, Int. J. Chem. Sci., (11), (3), 2013, 1247–1255.
  14. Thanasekaran, P., Rajendran, T., Rajagopal, S., Srinivasan, C., Ramaraj, R., Ramamurthy, P., Venkatachalapathy, B., Marcus inverted region in the photoinduced electron transfer reactions of ruthenium(II)-polypridyl complexes with phenolate ions, J. Phys. Chem. A, (101), 1997, 8195–8199. DOI: https://doi.org/10.1021/jp971746v
  15. Saha, B., Stanbury, D.M., Thermal and photochemical reduction of aqueous chlorine by ruthenium(II) polypyridyl complexes, Inorg. Chem., (39), 2000, 1294–1300. DOI: https://doi.org/10.1021/ic9910920
  16. Connors, K.A., Binding Constants: The Measurement of Stability, John Wiley & Sons, Ltd, Chichester, U.K, 1987.
  17. RameÅ¡ová, S., Sokolová, R., Degano, I., BulíÄková, J., Žabka, J., Gál, M., On the stability of the bioactive flavonoids quercetin and luteolin under oxygen-free conditions, Anal. Bioanal. Chem., (402), 2012, 975–982. DOI: https://doi.org/10.1007/s00216-011-5504-3
  18. Li, C., Hoffman, M.Z., Oxidation of phenol by singlet oxygen photosensitized by the tris(2,2ˈ bipyridine)ruthenium(II) ion, J. Phys. Chem. A, (104), 2000, 5998–6002. DOI: https://doi.org/10.1021/jp9937104