Main Article Content

Abstract

Polysaccharides are bio-degradable, inexpensive and easily available from consistent agricultural resources. Polysaccharides and their derivatives represent a group of polymer widely used in pharmaceutical and biomedical fields. The biodegradability of natural polymers reduces their shelf life. Grafting copolymerization technique is a most effective fascinating way for chemical modification of native characteristics of polysaccharides with maximum possibilities for improving the properties of polysaccharides and enhanced the range of exploitation.

While the major difficulty facing us during synthesizing a graft copolymers reaction, is the lack of commercial methods of synthesis and lower percent graft yield. It is well known that the most important methods of synthesis engage the employ of chemical free radical initiator i.e. conventional based methods. Graft copolymerization through γ-radiation method is a better method of grafting in comparison to a chemical method and exhibits a great potential to synthesize the graft copolymers by virtue of its higher efficiency, low cost, higher thermal stability as well as enhanced the yield of the graft copolymer. Future prospective of irradiation technique would be significant impacts to develop of polymerization.

Keywords

Grafting Polysaccharides Gamma Radiation Copolymer Polymerization

Article Details

How to Cite
kumar, D. (2016). IMPROVE THE NATIVE CHARACTERISTICS OF POLYSACCHARIDES BY GRAFTING THROUGH THE GAMMA RADIATION: A REVIEW. Green Chemistry & Technology Letters, 2(3), 151–159. https://doi.org/10.18510/gctl.2016.235

References

  1. Ahuja M, Singh K, Kumar A., Carbohyd Polym. 2009; 76:261–267. DOI: https://doi.org/10.1016/j.carbpol.2008.10.014
  2. Xu ZL, Yang YH, Jiang YM, Sun YM, Shen YD, Pang J., Mole 2008; 13:490–500. DOI: https://doi.org/10.3390/molecules13030490
  3. Gupta B, Scherer G., Chimia 1994; 48:127–137. DOI: https://doi.org/10.1007/BF01029671
  4. Taghizadeh MT, Mehrdad A., Iran J Chem Chem Eng 2006; 25:1-10.
  5. Lokhande HT, Varadarajan PV, Nachane ND., J Appl Polym Sci 1993;48:495–503 DOI: https://doi.org/10.1002/app.1993.070480313
  6. Biswal J, Kumar V, Bhardwaj YK, Goel NK, Dubey KA, Chaudhari CV, Sabharwal S., Radiat Phys Chemi 2007; 76:1624–1630. DOI: https://doi.org/10.1016/j.radphyschem.2006.11.014
  7. Xu Z, Sun Y, Yang Y, Ding J, Pang J., Carbohydr Polym 2007;70:444–450. DOI: https://doi.org/10.1016/j.carbpol.2007.05.011
  8. Sommers CH (2004) Recent advances in food irradiation. ACS, Philadelphia, PA
  9. El-Mohdy, H.L. and Safrany, A. RadPhysics and Chemistry, 2008; 77: 273-279. DOI: https://doi.org/10.1016/j.radphyschem.2007.05.006
  10. Kumar K, Kaith BS, Jindal R, Mittal H., J Appl Polym Sci 2012; 124: 4969–4977. DOI: https://doi.org/10.1002/app.35238
  11. Singh S, Kumar S., Nucl Inst Metd Phy Res B 2008; 266: 3417–3430. DOI: https://doi.org/10.1016/j.nimb.2008.04.022
  12. Bucio E, Burillo G., J. Radional. Nucl. Chem. 2009, 280: 239–243. DOI: https://doi.org/10.1007/s10967-009-0505-9
  13. Contreras A, Lorenzo C, Taboada C, Concheiro A, Bucio E., Acta Biomater 2011; 7 : 996–1008. DOI: https://doi.org/10.1016/j.actbio.2010.10.001
  14. Chattopadhy S, Chaki T K, Bhowmick A K., J. Appl. Polym. Sci. 2001; 81: 1936 – 1941. DOI: https://doi.org/10.1002/app.1626
  15. Chen J, Asano M, Yamaki T, Yoshida M J., Membr. Sci. 2005; 256: 38-46.
  16. Benson R S, Nucl. Instrum. Meth. 2002; 191: 752-758.
  17. Ferreira L M, Falcao A N, Gil M H., Nucl. Instrum. Meth. B2005; 236: 513 -520. DOI: https://doi.org/10.1016/j.nimb.2005.04.030
  18. Ebara M, Hoffman JM, Stayton PS, Hoffman AS., Radiation Physics and Chemistry, 1999; 76: 1409- 1413. DOI: https://doi.org/10.1016/j.radphyschem.2007.02.072
  19. Uhlmann P, Ionov L, Houbenov N, Nitschke M, Grundke K, Motornov M., Progress in Organic Coatings, 2006; 55168-174.
  20. Sebenik, A., Progress in Polymer Science, 1998; 23: 875-917. DOI: https://doi.org/10.1016/S0079-6700(98)00001-X