Main Article Content

Abstract

In current article, the versatile behaviour of Polyvinylbutyral (PVB)and its ability to form composite materials withvarious inorganic species is reported. PVB has hydrophilic vinyl alcohol groups and hydrophobic vinyl butyral groups. These groups behave as promoters of polymer adhesive and binders for organic moieties. The composite materials of PVB have been synthesized viaphysical as well as chemical both protocols. PVB is used as a constituent part in the formation of composite, induces a specific property in a resulting one which are utilized by various ways since it has stronger in binding ability, sharper optical clarity and able for providing flexibility and toughness in the formed composite. Varioussophisticated instrumentation techniques eg FTIR, XRD, FESEM, TEM etc. are reported for characterizations of samples. The composite materials have excellent film formation properties, and can be potential candidate for photoelectric as well as photovoltaic applications. The inorganic conducting species which do not have film formation ability can be useful by composite formation along with PVB. The green protocols for synthesis of composites may also useful for biological applications. 

Keywords

Composite Material Hydrophilic Hydrophobic Nanofibre Antireflection coating.

Article Details

How to Cite
Kumar, P., Khan, N., & Kumar, D. (2016). POLYVINYL BUTYRAL (PVB), VERSETILE TEMPLATE FOR DESIGNING NANOCOMPOSITE/COMPOSITE MATERIALS:A REVIEW. Green Chemistry & Technology Letters, 2(4), 185–194. https://doi.org/10.18510/gctl.2016.244

References

  1. Andras, G.; Abraham, P.; Wolf, M. O. A PPV/MCM-41 Composite Material. Chem. Mater 2004, 16, 2180-2186. DOI: https://doi.org/10.1021/cm035303h
  2. Bai, H.; Polini, A.; Delattre, B.; Tomsia, A. P. Thermoresponsive Composite Hydrogels with Aligned Macroporous Structure by Ice-Templated Assembly. Chem. Mater 2013, 25, 4551−4556. DOI: https://doi.org/10.1021/cm4025827
  3. Nambier, S., Yeow, J. T. W. Polymer-Composite Materials for Radiation Protection. ACS Appl. Mater. Interfaces 2012, 4, 5717-5725. DOI: https://doi.org/10.1021/am300783d
  4. Jia, H.; Stock, C.; Kloepsch, R.; He, X.; Badillo, J. P.; Fromm,O.; Vortmann, B.; Placke, T. Facile Synthesis and Lithium Storage Properties of a Porous NiSi2/Si/Carbon Composite Anode Material for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 1508-1515. DOI: https://doi.org/10.1021/am506486w
  5. Shen, X.; Mu, D.; Chen, S.; Wu, B.; Wu, F. Enhanced Electrochemical Performance of ZnO-Loaded/Porous Carbon Composite as Anode Materials for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5, 3118−3125. DOI: https://doi.org/10.1021/am400020n
  6. Cao, W. C.; Wang, J. L. Xie, X. L.; Wilkie, C. A. Thermal Stability and Fire Retardancy of Polypropylene/Sepiolite Composite. In Fire and Polymers VI: New Advances in Flame Retardant Chem. and Sci. 2012, 1118, 391-406. DOI: https://doi.org/10.1021/bk-2012-1118.ch025
  7. Yamda, M.; Hashimoto, K. DNA-Cyclodextrin Composite Material for Environmental Applications. Biomacromol. 2008, 9, 3341-3345. DOI: https://doi.org/10.1021/bm800984p
  8. Raman, N.; Sudharsan, S.; Pothiraj, K. Synthesis and structural reactivity of inorganic–organic hybrid nanocomposites - A review. J. of Saudi Chem. Society 2012, 16, 339-352. DOI: https://doi.org/10.1016/j.jscs.2011.01.012
  9. Ray, S. S.; Okamoto, M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. in Polymer Sci. 2003, 28, 1539-1641. DOI: https://doi.org/10.1016/j.progpolymsci.2003.08.002
  10. Wu, X.; Yan, X.; Dias, Y.; Wang, J.; Cheng, X. Facile synthesis of AgNPs /MoS2 nanocomposites with excellent electrochemical properties. Mat. Letters 2015, 152,128–130. DOI: https://doi.org/10.1016/j.matlet.2015.03.118
  11. Xie, Y.; Yuan, J.; Ye, H.; Song, P.; Hu, S. Facile ultrasonic synthesis of graphene/SnO2 nano composite and its application to the simultaneous electrochemical determination of dopamine, ascorbic acid, and uric acid. J. of Electro anal. Chemistry 2015, 749, 26–30. DOI: https://doi.org/10.1016/j.jelechem.2015.04.035
  12. Heli, H.; Parsa, A.; Sattarahmady, N. A study on the pseudocapacitive behavior of polyluminol/graphene Nanocomposites. J. of Electro anal. Chemistry 2015, 751, 15–22. DOI: https://doi.org/10.1016/j.jelechem.2015.05.022
  13. Cheng, J.; Jin, S.; Zhang, R.; Shao, X.; Jin, M. Enhanced adsorption selectivity of dibenzothiophene on ordered mesoporous carbon-silica nanocomposites via copper modification. Microp. and Mesop. Materials 2015, 212,137-145. DOI: https://doi.org/10.1016/j.micromeso.2015.03.016
  14. Subhan, M. A.; Uddin, N.; Sarker, P.; Azad, A. K.; Begum, K. Photoluminescence, photocatalytic and antibacterial activities of CeO2.CuO.ZnO nanocomposite fabricated by co-precipitation method. Spectrochimica Acta Part A: Mol. and Biomol. Spectroscopy 2015, 149, 839–850. DOI: https://doi.org/10.1016/j.saa.2015.05.024
  15. Shekofteh-Gohari, M.; Habibi-Yangjeh, A. Novel magnetically separable Fe3O4@ZnO/AgCl nanocomposites with highly enhanced photocatalytic activities under visible-light irradiation. Separation and Purif. Techn. 2015, 147, 194–202. DOI: https://doi.org/10.1016/j.seppur.2015.04.034
  16. Kermadi, S.; Agoudjil, N.; Sali, S.; Zougar, L.; boumaour, M.; Broch, L.; Naciri, A. E.; Placido, F. Microstructure and optical dispersion characterization of nanocomposite sol–gel TiO2-SiO2 thin films with different compositions. Spectroch. Acta Part A: Molec. and Biomol. Spectroscopy 2015,145, 145–154. DOI: https://doi.org/10.1016/j.saa.2015.02.110
  17. Mallakpoura, S.; Dinaria M.; Niamani, M. A facile and green method for the production of novel and potentially biocompatible poly(amide-imide)/ZrO2–poly(vinyl alcohol)nanocomposites containing trimellitylimido-l-leucine linkages . Prog. in Org. Coatings 2015, 86, 11–17. DOI: https://doi.org/10.1016/j.porgcoat.2015.03.007
  18. Yadollahia, M.; Farhoudiana, S.; Namazi, H. One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydro gel beads as drug delivery systems. International J. of Bio. Macromol. 2015, 79, 37–43. DOI: https://doi.org/10.1016/j.ijbiomac.2015.04.032
  19. Das, S.; Sharma, M.; Saharia, D.; Sarma, K. K.; Sarama, M. G.; Borthakur, B. B.; Bora, U. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 2015, 62, 66-75. DOI: https://doi.org/10.1016/j.biomaterials.2015.04.047
  20. Xu, T.; Liu, N.; Yuan, J.; Man, Z. Triple tumor markers assay based on carbon–gold nano composite. Biosens. and Bioelectro. 2015, 70, 161–166. DOI: https://doi.org/10.1016/j.bios.2015.03.036
  21. Duan, H.; Qiu, T.; Zhang, Z.; Guo, L.; Ye, J. The atmospheric pressure synthesis of TiO2@carbon nanocomposite microspheres and the enhanced photocatalytic performance. Materials Lett. 2015, 153, 51–54. DOI: https://doi.org/10.1016/j.matlet.2015.04.007
  22. Kalpana, K.; Selvaraj, V. A novel approach for the synthesis of highly active ZnO/TiO2/Ag2O nanocomposite and its photocatalytic applications. Ceram. International 2015, 41, 9671–9679. DOI: https://doi.org/10.1016/j.ceramint.2015.04.035
  23. Seftela, E. M.; Niarchosb, M.; Mitropoulosb, Ch.; Vansanta, E.F.; Coola, P. Photocatalytic removal of phenol and methylene-blue in aqueousmedia using TiO2@LDH clay nanocomposites. Cat. Today 2015, 252, 120–127. DOI: https://doi.org/10.1016/j.cattod.2014.10.030
  24. Borai, E. H.; Breky, M. M. E.; Syed, M. S.; Abo-Aly, M. M. Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive cesium, cobalt and europium ions. .J.of Colloid and Interf. Sci. 2015, 450, 17–25. DOI: https://doi.org/10.1016/j.jcis.2015.02.062
  25. Tiankhoon, L.; Hassan, N. H.; Rahman, M. Y. A.; Vedraj, R.; Matsumi, N.; Ahmada, A. One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ion. 2015, 276, 72–79. DOI: https://doi.org/10.1016/j.ssi.2015.03.034
  26. Igore, I.; Mateusz, K. B.; Grzegorz, N.; Mariusz, J.; Mykola, P.; Karol, Z. Structural and XPS studies of PSi/TiO2nanocomposites prepared by ALD and Ag-assisted chemical etching. App. Surface Sci. 2015, 347, 777–783. DOI: https://doi.org/10.1016/j.apsusc.2015.04.172
  27. Biao, Y.; Hongkai, N.; Jijun, H.; Yi, L. Effects of Poly(vinyl butyral) as a Macromolecular Nucleating Agent on the Nonisothermal Crystallization and Mechanical Properties of Biodegradable Poly(butylene succinate). Macromol. 2014, 47, 284−296. DOI: https://doi.org/10.1021/ma4019894
  28. Zhou, Z. M.; David, D. J.; Macknigh, W. J.; Karaz, K. E. Synthesis, characterization and miscibility of PVB of varying VA component, Tr.J. of Chemistry 1997, 21, 229-28.
  29. EI-Sherbiny, M. A.; EI-Rehim, N. S. A. Spectroscopic and dielectric behavior of pure and nickel doped polyvinyl butyral films. Polym. Testing 2001, 20, 371–378. DOI: https://doi.org/10.1016/S0142-9418(00)00045-3
  30. Guinovart, T.; Crespo, G. A.; Rius, F. X.; Andrade, F. J. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements. Anal. Chem. Acta 2014, 821, 72-80. DOI: https://doi.org/10.1016/j.aca.2014.02.028
  31. Gopal, S.; Ramchandran, R.; Agnihotri, R. S. A. Polyvinyl butyral based solid polymeric electrolytes: Preliminary studies. Solar energy mat. and solar cells 1997, 45, 17-25. DOI: https://doi.org/10.1016/S0927-0248(96)00022-0
  32. Zhang, X.; Cao, C.; Xiao, B.; Yan, L.; Zhang, Q.; Jiang, B. Preparation and characterization of polyvinyl butyral/silica hybrid antireflective coating: effect of PVB on moisture-resistance and hydrophobicity. J Sol-Gel Sci Technol 2010, 53, 79–84. DOI: https://doi.org/10.1007/s10971-009-2058-3
  33. Zhu, H.; Liu, Z.; Kong, D.; Wang, Y.; Z. Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method. J. of colloid and interf. Sci. 2009, 331, 432-438. DOI: https://doi.org/10.1016/j.jcis.2008.11.071
  34. Zadeh, M. M. A.; Rad, M. K.; Ebadzadeh, T. Synthesis of mullite nanofibres by electrospinning of solutions containing different proportions of polyvinyl butyral. Ceram. International 2013, 39, 9079–9084. DOI: https://doi.org/10.1016/j.ceramint.2013.05.003
  35. Zhang, Y.; Ding, Y.; Li, Y.; Gao, J.; Yang, J. Synthesis and characterization of polyvinyl butyral-AlNO3 sol used for Alumina based fibers. J Sol-Gel Sci Technol 2009, 49, 385-390. DOI: https://doi.org/10.1007/s10971-008-1865-2
  36. Nakane, K.; Kurita, T.; Ogihara, T.; Ogata, N. Properties of poly(vinyl butyral)/TiO2 nanocomposites formed by sol–gel process. Compos. Part B: Eng. 2004, 35, 219-222. DOI: https://doi.org/10.1016/S1359-8368(03)00066-0
  37. Dhaliwal, A. K.; Hay, J. N. The characterization of polyvinyl butyral by thermal analysis. Thermoch. Acta, 2002, 391, 245-255. DOI: https://doi.org/10.1016/S0040-6031(02)00187-9
  38. Lin, Q.; Li, Y.; Yang, M. Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibres. Anal. Chim. Acta 2012, 748, 73– 80. DOI: https://doi.org/10.1016/j.aca.2012.08.041