Main Article Content

Abstract

It evaluates the inhibitory effect of the isolated compound with different drug targets for the anti-cancer activities. The present investigation analyses the docking score of the isolated compound with different proteins. Two types of proteins (Drug targets) were chosen against cancer namely Human Epidermal Growth Factor and Crystal structure of human placental aromatase cytochrome P450.


This result reveals that the compound 19-Hydroxy lochnericine shows hydrogen interactions with the docking energy of – 7.41 and -7.15 –8.83 kcal/mol. This reveals a significant interaction between the target proteins and the selected compound. Hence, the compound may offer therapeutic advantages in the treatment and prevention of diabetes and breast cancer.

Keywords

Isolated compound C.roseus Drug targets cytochrome P450 ADMET Docking scores

Article Details

How to Cite
Retna, A. M., Ethalsha, P., & Lydia, J. (2016). DOCKING SCORE OF THE ISOLATED COMPOUND: 19-HYDROXY LOCHNERICINE - WITH DIFFERENT PROTEINS. Green Chemistry & Technology Letters, 2(1), 31–34. https://doi.org/10.18510/gctl.2015.216

References

  1. C. Qin, C. Zhang, F. Zhu, F. Xu, S.Y. Chen, P. Zhang, Y. H. Li, S.Y. Yang, Y. Q. Wei, L. Tao, Y. Z. Chen, Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res. 42(Database issue): D1118-23, 2014. PubMed.
  2. https://doi.org/10.1093/nar/gkt1129 DOI: https://doi.org/10.1093/nar/gkt1129
  3. PMid:24265219 PMCid:PMC3964951
  4. F. Zhu, Z. Shi, C. Qin, L.Tao, X. Liu, F. Xu, L. Zhang, Y. Song, X. H. Liu, J.X. Zhang, B.C. Han, P. Zhang, Y. Z. Chen, Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res. 40(D1): D1128-1136, 2012. PubMed.
  5. https://doi.org/10.1093/nar/gkr797 DOI: https://doi.org/10.1093/nar/gkr797
  6. PMid:21948793 PMCid:PMC3245130
  7. F. Zhu, B.C. Han, Pankaj Kumar, X. H. Liu, X. H. Ma, X. N. Wei, L.Huang, Y. F. Guo, L.Y. Han, C.J. Zheng, Chen YZ. Update of TTD: Therapeutic Target Database. Nucleic Acids Res. 38(suppl 1):D787-91, 2010.PubMed
  8. https://doi.org/10.1093/nar/gkp1014 DOI: https://doi.org/10.1093/nar/gkp1014
  9. PMid:19933260 PMCid:PMC2808971
  10. X. Chen, Z. L. Ji, Y. Z. Chen. TTD: Therapeutic Target Database. Nucleic Acids Res. 30(1), 2002, 412-415,.PubMed http://bidd.nus.edu.sg/group/TTD/ZFTTDWholeSearch.asp?SetQuery=Y
  11. https://doi.org/10.1093/nar/30.1.412 DOI: https://doi.org/10.1093/nar/30.1.412
  12. PMid:11752352 PMCid:PMC99057
  13. H.S. Lu, J.J. Chai, M. Li, B.R. Huang, C.H. He, R.C. Bi, Crystal structure of human epidermal growth factor and its dimerization. Journal: J.Biol.Chem. 276, 2001, 34913-34917 , PubMed: 11438527
  14. https://doi.org/10.1074/jbc.M102874200 DOI: https://doi.org/10.1074/jbc.M102874200
  15. PMid:11438527
  16. D. Ghosh, J. Griswold, M. Erman, W. Pangborn, Structural basis for androgen specificity and oestrogen synthesis in human aromatase Journal: Nature 457, 2009, 219-223. PubMed:19129847 iLOGP: a simple, robust, and efficient description of n-octanol/water partitioncoefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 54(12), 2014, 3284-3301.
  17. https://doi.org/10.1038/nature07614 DOI: https://doi.org/10.1038/nature07614
  18. PMid:19129847 PMCid:PMC2820300