Main Article Content


Purpose of the study: This research paper proposes the use of soft mapping techniques to model the relationship between crop treatment and crop yield, with the goal of analyzing and recommending the best treatment options for crops. Soft mapping combines fuzzy logic and neural networks to create a more accurate and robust model that considers uncertain or ambiguous inputs.

Methodology: The model can be trained using data on past crop yields, treatment options, and other relevant factors such as climate and soil quality. By taking into account the inherent uncertainty and ambiguity in the input data, the soft mapping model can provide more accurate predictions and recommendations for the best treatment options for a given crop and environmental conditions.

Main Findings: The findings of this research could have important implications for the agricultural industry, particularly in the context of sustainable agriculture and food security.

Applications of this study: The proposed approach has the potential to significantly improve the analysis and decision-making processes in agriculture, helping farmers to make more informed decisions about crop treatments and ultimately increasing crop yields.


Crop Treatment Soft Mapping Fuzzy Logic Neural Network

Article Details

How to Cite
Rajput, A. S., & Rajput, A. S. (2023). An application of soft mapping in model treatment. International Journal of Students’ Research in Technology & Management, 11(3), 06–09.


  1. Acar, U., Koyuncu, F., & Tanay, B. (2010). Soft sets and soft rings. Computers & Mathematics with Applications, 59, 3458-3463.
  2. Aktas, H., & Agman, N. C. (2007). Soft sets and soft groups. Information Sciences, 177(13), 2726-2735.
  3. Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & Mathematics with Applications, 57, 1547-1553.
  4. Allam, A. A., Zahran, A. M., & Hasanein, I. A. (1987). On almost continuous, s-continuous and set connected mappings. Indian Journal of Pure and Applied Mathematics, 18(11), 991-996.
  5. Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96.
  6. Aygunoglu, A., & Aygun, H. (2011). Some notes on soft topological spaces. Neural Computing and Applications, 62, 1-7.
  7. Cagman, N., Karatas, S., & Enginoglu, S. (2011). Soft topology. Computers & Mathematics with Applications, 62, 351-358.
  8. Chen, B. (2013). Soft semi-open sets and related properties in soft topological spaces. Applied Mathematics and Information Sciences, 7(1), 287-294.
  9. Dubey, K. K., & Panwar, O. S. (1984). Some properties of s-connectedness between sets and set s-connected mappings. Indian Journal of Pure and Applied Mathematics, 15(4), 343-354.
  10. Feng, F., Jun, Y. B., & Zhao, X. (2008). Soft semirings. Fuzzy Sets and Systems: Theory and Applications, 56(10), 2621-2628.
  11. Feng, F., Jun, Y. B., & Zhao, X. (2009). Pseudo d-algebras. Information Sciences, 179, 1751-1759.
  12. Gau, W. L., Buehrer, D. J., (1993). Vague sets. IEEE Transactions on Systems, Man and Cybernetics, 23(2), 610-614.
  13. Georgiou, D. N., Megaritis, A. C., & Petropoulos, V. I. (2013). On soft topological spaces. Applied Mathematics and Information Sciences, 7(5), 1889-1901.
  14. Gocur, O., & Kopuzlu, A. (2015). On soft separation axioms. Annals of Fuzzy Mathematics and Informatics, 9(5), 817-822.
  15. Hazra, H., Majumdar, P., & Samanta, S. K. (2012). Soft topology. Fuzzy Information and Engineering, 3(1), 105-115.
  16. Hazra, H., Majumdar, P., & Samanta, S. K. (2014). Soft proximity. Annals of Fuzzy Mathematics and Informatics, 7(6), 867-877.
  17. Herawan, T., Rose, A. N. M., & Deris, M. M. (2010). Soft set theoretic approach for dimensionality reduction. International Journal of Database Theory and Application, 3(2), 47-60.
  18. Hussain, S., & Ahmad, B. (2015). Soft separation axioms in soft topological spaces. Hacet. J. Math. Stat., 44(3), 559-568.
  19. Hussain, S. (2015). A note on soft connectedness. J. Egyptian Math. Soc., 23, 6-11.
  20. Hussain, S., & Ahmad, B. (2011). Some properties of soft topological spaces. Comput. Math. Appl., 62, 4058-4067.
  21. Jeyanthi, V., & Janaki, C. (2013). On π gr-Continuous functions. International Journal of Engineering Reasearch and Applications, 3(1), 1861-1870.
  22. Jiang, Y., Tang, Y., Chen, Q., Wang, J., & Tang, S. (2010). Extending soft sets with description logics. Comput. Math. Appl., 59, 2087-2096.
  23. Jun, Y. B., Lee, K. J., & Park, C. H. (2008a). Soft set theory applied to commutative ideals in BCK-algebras. Journal of Applied Mathematics Informatics, 26(3-4), 707-720.
  24. Jun, Y. B., Lee, K. J., & Park, C. H. (2009a). Soft set theory applied to ideals in d-algebras. Comput. Math. Appl., 57, 367-378.
  25. Jun, Y. B., Lee, K. J., & Khan, A. (2010). Soft ordered semigroups. Math. Log. Q., 56(1), 42-50.
  26. Jun, Y. B., & Park, C. H. (2009b). Applications of soft sets in Hilbert algebras. Iran. J. Fuzzy Syst., 6(2), 55-86.
  27. Jun, Y. B. (2008). Soft BCK/BCI-algebras. Comput. Math. Appl., 56, 1408-1413.
  28. Kharral, A., & Ahmad, B. (2011). Mappings on soft classes. New Math. Nat. Comput., 7(3), 471-481.
  29. Kong, Z., Gao, L., Wang, L., & Li, S. (2008). The normal parameter reduction of soft sets and its algorithm. Comput. Math. Appl., 56, 3029-3037.
  30. Kovkov, D. V., Kolbanov, V. M., & Molodtsov, D. A. (2007). Soft sets theory-based optimization. J. Comput. Syst. Sci. Int., 46(6), 872-880.
  31. Kuratowski, K. (1968). Topology Vol. II (transl.). Academic Press.
  32. Kwak, J. H. (1971). Set-connected mappings. Kyungpook Math.J., 11, 169-172.
  33. Mahanta, J., & Das, P. K. (2012). On soft topological space via semi open and semi closed soft sets. General Topology, 7(1), 287-294.
  34. Maji, P.K., Biswas, R. and Roy, R. (2003). Soft set theory, Comput. Math Appl., 45, 555-562.