Main Article Content

Abstract

Purpose of study: To introduce the concept of projective and involuntary variational inequality problems of order  and  respectively. To study the equivalence theorem between these problems. To study the projected dynamical system using self involutory variational inequality problems.


Methodology: Improved extra gradient method is used.


Main Finding: Using a self-solvable improved extra gradient method we solve the variational inequalities. The algorithm of the projected dynamical system is provided using the RK-4 method whose equilibrium point solves the involutory variational inequality problems.


Application of this study: Runge-Kutta type method of order 2 and 4 is used for the initial value problem with the given projected dynamical system with the help of self involutory variational inequality problems.


The originality of this study:  The concept of self involutory variational inequality problems, projective and involuntary variational inequality problems of order  and  respectively are newly defined.

Keywords

Involutory Variational Inequalities Projective Variational Inequalities Projection Method Projected Dynamical System

Article Details

How to Cite
Mitra, S., & Das, P. K. (2021). ρ-PROJECTIVE AND σ-INVOLUNTARY VARIATIONAL INEQUALITIES AND IMPROVED PROJECTION METHOD FOR PROJECTED DYNAMICAL SYSTEM. International Journal of Students’ Research in Technology & Management, 9(2), 18–24. https://doi.org/10.18510/ijsrtm.2021.924

References

  1. Bardaro, C., & Ceppitelli, R. (1988). Some further generalizations of Knaster-Kuratowski Mazurkiezicz theorem and minimax inequalities, Journal of Mathematical Analysis and Applications, 132(2), 484 – 490. https://doi.org/10.1016/0022-247X(88)90076-5 DOI: https://doi.org/10.1016/0022-247X(88)90076-5
  2. Behera, A.,& Panda, G. K. (1997).Variational inequality in Hausdorff topological vector space, Indian J. Pure Appl. Math, 28(2), 181 – 187.
  3. Behera, A., Das, P. K. (2006). Variational Inequality Problems in H-spaces, International Journal of Mathematics and Mathematical Sciences, Article 78545, 1 - 18. https://doi.org/10.1155/IJMMS/2006/78545 DOI: https://doi.org/10.1155/IJMMS/2006/78545
  4. Das P. K., & Mohanta, S. K. (2009). Generalized VIP, Generalized Vector CP in Hilbert Spaces, Riemannian n-Manifold, Sn and Ordered Topological Vector Spaces: A Study Using Fixed Point Theorem and Homotopy Function, Advances in Nonlinear Variational Inequalities, 12(2), 37 – 48.
  5. Das, P.K. (2011). An iterative method for (AGDDVIP) in Hilbert space and the Homology theory to study the (GDDCPn) in Riemannian n-manifolds in the presence of fixed point inclusion, European Journal of Pure and Applied Mathematics, 4(4), 340-360.
  6. Das, P. K., &Baliarsingh, P. (2020). Involutory difference operator and jth-difference operator, PanAmerican Mathematical Journal, 30(4), 53 – 62.
  7. Fang, C., Chen S., & Zheng, J. (2013). A projection-type method for multivalued variational inequality, Abstract and Advanced Analysis, Article ID 836720. https://doi.org/10.1155/2013/836720 DOI: https://doi.org/10.1155/2013/836720
  8. Fukushima, M. (1986). A relaxed projection method for variational inequalities, Mathematical Programming, 35, 58 – 70. https://doi.org/10.1007/BF01589441 DOI: https://doi.org/10.1007/BF01589441
  9. Giannessi, F. (1980).Vector variational inequalities and vector equilibria, Wiley, New York.
  10. He, B. S., & Liao, L. Z. (2002). Improvements of some projection methods for monotone nonlinear variational inequalities. Journal of Optimization Theory and applications, 112(1), 111-128. https://doi.org/10.1023/A:1013096613105 DOI: https://doi.org/10.1023/A:1013096613105
  11. Lee, G. M., Kim, D. S., & Lee, B. S. (1996). Generalized vector variational inequality. Applied Mathematics Letters, 9(1), 39-42. https://doi.org/10.1016/0893-9659(95)00099-2 DOI: https://doi.org/10.1016/0893-9659(95)00099-2
  12. Limaye, B. V. (1997). Functional analysis, New Age International (P) Limited, New Delhi.
  13. Malitsky, Y. (2015). Projected reflected gradient methods for monotone variational inequalities. SIAM Journal on Optimization, 25(1), 502-520. https://doi.org/10.1137/14097238X DOI: https://doi.org/10.1137/14097238X
  14. Mosco, U. (1972). Dual variational inequalities. Journal of Mathematical Analysis and Applications, 40(1), 202-206. https://doi.org/10.1016/0022-247X(72)90043-1 DOI: https://doi.org/10.1016/0022-247X(72)90043-1
  15. Nagurney, A., &Zhang, D. (1996). Projected dynamical systems and variational inequalities with applications, Springer Science. https://doi.org/10.1007/978-1-4615-2301-7 DOI: https://doi.org/10.1007/978-1-4615-2301-7
  16. Noor, M. A. &Rassias, T.M. (1999). Projection Methods for monotone variational inequalities, Journal of Mathematical Analysis and Applications, 237(2), 405- 412. https://doi.org/10.1006/jmaa.1999.6422 DOI: https://doi.org/10.1006/jmaa.1999.6422
  17. Siddiqi, A. H., Ansari, Q. H., & Khaliq, A. (1995). On vector variational inequalities. Journal of Optimization Theory and Applications, 84(1), 171-180. https://doi.org/10.1007/BF02191741 DOI: https://doi.org/10.1007/BF02191741
  18. Solodov, M. V., &Svaiter, B. F. (1997). A new projection method for variational inequality problems, SIAM J. Cont. Optim. 37(3), 765 – 776. https://doi.org/10.1137/S0363012997317475 DOI: https://doi.org/10.1137/S0363012997317475
  19. Stampacchia, G. (1964). Formesbilineairescoercitives sur les ensembles convexes, Comptesrendushebdomadaires des sances de l’Acadmie des sciences, 258, 4413–4416.
  20. Thong, D. V., & Cho, Y. J. (2020). New strong convergence theorem of the inertial projection and contraction method for variational inequality problems. Numerical Algorithms, 84(1), 285-305. https://doi.org/10.1007/s11075-019-00755-1 DOI: https://doi.org/10.1007/s11075-019-00755-1