Main Article Content

Abstract

Purpose: This study gives a critical assessment of the rainfall erosivity factor (R) for selected sites in the Majha region, representing different locations use of mean monthly rainfall data. 


Methodology: By applying empirical methods, the rainfall intensity for all the locations were obtained and was further determined at three different intervals of 30-minutes, 45-minutes and 60-minutes, respectively. The rainfall erosivity factor (R) was calculated by the revised universal soil loss equation (RUSLE).


Main Findings: Using RUSLE, the rainfall erosivity factor (R) for each of the locations was measured as follows; EI = 3878.49 (MJmmha-1hr-1), EI = 4013.71 (MJmmha-1hr-1), EI = 4302.24 (MJmmha-1hr-1) for Majha region of Amritsar, Tarntaran and Pathankot respectively. A close observation of the data obtained revealed that as rainfall intensity increased with the duration, the rainfall erosivity index reduced or decreased.


Implications of study: Nevertheless, it is expected that if proper cover crop and management practices are applied despite the region, the study area falls within, rainfall erosivity can be cushioned, thus reducing further erosion tendencies and enhancing food production chances from productive lands within the area.


The novelty of study: The rainfall erosivity factor (R) was calculated by the revised universal soil loss equation (RUSLE).

Keywords

Soil Erosion Rainfall Erosivity Index Rainfall Intensity RUSLE Punjab

Article Details

How to Cite
Kumar, P. (2021). ASSESSMENT AND MAPPING OF RAINFALL EROSIVITY INDEX (R) FOR MAJHA REGION, PUNJAB IS A STATE IN NORTHERN, INDIA. International Journal of Students’ Research in Technology & Management, 9(3), 15–23. https://doi.org/10.18510/ijsrtm.2021.932

References

  1. Agricultural Research Services (ARS), (1961). USDA. A universal equation for predicting rainfall erosion losses. ARS, 22-26.
  2. Angelo- Martinez, M. and Begueria, S. (2009). Estimating Rainfall erosivity from daily precipitation records: A comparison among methods using data from Ebro Basin (NE Spain), Elsevier Journal of Hydrology, 379(2009) 111-121. https://doi.org/10.1016/j.jhydrol.2009.09.051 DOI: https://doi.org/10.1016/j.jhydrol.2009.09.051
  3. Balogun. I., Adegun, O., Adeaga, O. (2012). An assessment of rainfall erosivity in parts of eastern Nigeria: a case study of Owerri and Enugu. Hydrology for Disaster Management. Special Publication of the Nigerian Association of Hydrological Sciences.
  4. Carvalho, N.O. (2008). Hidrossedimentologia Prática, 2ª ed. Interciência, Rio da Janeiro, Brazil. 599 pp.
  5. Dai, Q., Zhu, J., Zhang, S., Zhu, S., Han, D., and Lv, G (2020). Estimation of rainfall erosivity based on WRF-derived raindrop size distributions, Hydro. Earth Syst. Sci., 24, 5407-5422, https://doi.org/10.5194/hess-24-5407-2020, https://doi.org/10.5194/hess-24-5407-2020 DOI: https://doi.org/10.5194/hess-24-5407-2020
  6. Michael, A.M. and Ojha, T.P. (2003). Principles of Agricultural Engineering, Volume II, Jain Publishers, New Delhi, India 3-436 pp.
  7. Nearing, M.A., Yin, S., Borelli, P., Polyakov, V.O. (2017). Rainfall erosivity: An historical review. Catena, 157, 357-362. https://doi.org/10.1016/j.catena.2017.06.004 DOI: https://doi.org/10.1016/j.catena.2017.06.004
  8. Oliveira, P.T.S., Wendland, E. and Nearing, M.A. (2012). Rainfall Erosivity in Brazil: A review. CATENA, 100, 139-147. https://doi.org/10.1016/j.catena.2012.08.006 DOI: https://doi.org/10.1016/j.catena.2012.08.006
  9. Okorafor, O.O., Akinbile, C. O., Adeyemo, A. J. and Egwuonwu, C. C. (2017). Determination of Rainfall Erosivity Index (R) for Imo State. American Journal of Engineering Research, 6(2), 13-16.
  10. Powlson, D. S., Gregory, P. J., Whalley, W. R., Quinton, J. N., Hopkins, D. W., Whitmore, A. P., Hirsch, P. R., Goulding, K. W. T., (2011). Soil Management in Relation to Sustainable Agriculture & Ecosystem services. Food Policy Guidelines, 36(2), 72-87.https://doi.org/10.1016/j.foodpol.2010.11.025 DOI: https://doi.org/10.1016/j.foodpol.2010.11.025
  11. Renard, K. G., Foster, G. R., Weenies, G. A, McCool, D. K. and Yoder, D.C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE)USDA, Agriculture Handbook No.703, Washington DC 126-143.
  12. Salako, F.K. (2010). Development of Isoerodent maps for Nigeria from daily rainfall amount. Geoderma, 156, 372-378. https://doi.org/10.1016/j.geoderma.2010.03.006 DOI: https://doi.org/10.1016/j.geoderma.2010.03.006
  13. Satapathy, K.K., Jena, S.K., and Daschaudhuri D. (2000). Erosion Index Analysis of Umiam, Meghalaya. Indian J. Soil Cons. 28(3), 193-197.
  14. Sanchez-Moreno, J.F, Mannaerts C.M and Jetten, V. (2013). Rainfall Erosivity Mapping for Santiago, Cape Verde. Geoderma 217, 74-82. https://doi.org/10.1016/j.geoderma.2013.10.026 DOI: https://doi.org/10.1016/j.geoderma.2013.10.026
  15. Talchabhadel, R., Nakagawa, H., Kawaike, K. et al. (2020). Evaluating the rainfall erosivity (R-factor) from daily rainfall data: an application for assessing climate change impact on soil loss in Westrapti River basin, Nepal Model. Earth Syst. Environ., 6, 1741-1762 https://doi.org/10.1007/s40808-020-00787-w, https://doi.org/10.1007/s40808-020-00787-w DOI: https://doi.org/10.1007/s40808-020-00787-w
  16. Yin, S., Xie, Y., Nearing, M.A and C. Wang (2007). Estimation of Rainfall Erosivity using 5-60-minute fixed interval rainfall data from China. Catena, 70, 300-312. https://doi.org/10.1016/j.catena.2006.10.011 DOI: https://doi.org/10.1016/j.catena.2006.10.011
  17. Bullock, P.R., Ede Jong and Kiss, J.J. (1990). An assessment of rainfall erosion potential in Southern Saskatchewan from daily rainfall records. Can. Agaric, Eng., 32, 17-24.
  18. Elangovan, A. B. and Seetharaman, R. (2011). Estimating Rainfall Erosivity of the Revised Universal Soil Loss Equation from daily rainfall depth in Krishnagiri Watershed region of Tamil Nadu, India. International Conference on Environmental and Computer Science vol.19.
  19. Fayas, C. S. (2019). Soil Loss Estimation Using RUSLE Model to Prioritize Erosion Control in KELANI River Basin in Sri Lanka. International Soil and Water Conservation Research, 7(2), 130-137. https://doi.org/10.10 16/j.iswcr.2019.01.003 DOI: https://doi.org/10.1016/j.iswcr.2019.01.003
  20. Favis-Mortlock, A., Boardman, J., & MacMillan, V. (2001). The Limits of Erosion Modeling: Why We Should Proceed with Care. In R. S. Harmon, & W. W. Doe III, Landscape Erosion and Evolution Modeling (S. 477-516). Boston: Springer. https://doi.org/10.1007/978-1-4615-0575-4_16 DOI: https://doi.org/10.1007/978-1-4615-0575-4_16
  21. Gelagay, H.S. and Minale, A.S. (2016). Soil Loss estimation using GIS and remote sensing techniques: A cast of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation, 4, 126-136. https://doi.org/10.1016/j.iswcr.2016.01.002 DOI: https://doi.org/10.1016/j.iswcr.2016.01.002
  22. Jain, S. and Narain, S. (1995). Development of Erosivity Index on Daily Rainfall Basis. B.Tech. Thesis in Agricultural Engineering. G. B. Pant University of Agriculture and Technology, Pantnagar.
  23. Lo, A., El-Swaify, S., & Dangler, E. &. (2016). Effectiveness of EI 30 as an Erosivity Index in Hawaii. Fao, Available online: http://agris.fao.org/agr is search/search.do? Record ID =US8639059
  24. Marco da Silva, A. (2004). Rainfall erosivity map for Brazil. Catena, 57, 251 - 259. https://doi.org/10. 1016/j.catena.2003.11.006 DOI: https://doi.org/10.1016/j.catena.2003.11.006
  25. Okorafor, O.O, Akinbile, C.O and Adeyemo, A.J. (2018). Determination of Soils Erodibility Factor (K) for Selected Sites in Imo State, Nigeria. Resources and Environment, 8(1), 6-13.
  26. Soo Huey Teh, (2011). Soil Erosion modelling using RUSLE and GIS on Cameron Highlands, Malaysia for hydropower Development. A master's thesis was published by the school for renewable energy science, the University of Iceland and Akureyri.
  27. Selemo, A.O, Ananaba, S.E, Nwagbara, J.O, Egejuru, V.E and V. Nwugha, (2012). Geostatistical Analysis of Rainfall Temperature and evaporation Data of Owerri for Ten years. Journal of Earth and Environmental Sciences, 2, 195-205. https://doi.org/10.4236/acs.2012.22020 DOI: https://doi.org/10.4236/acs.2012.22020
  28. Teh, H.S (2011). Soil Erosion Modeling using GIS and RUSLE for Cameron Highlands, Malaysia for Hydropower Development, School of Renewable Energy Studies, University of Iceland 29-45 pp.
  29. Udokporo, E, Anikwe, M.A.N and K.E. Chukwu (2015). Assessment and mapping of the Vulnerability of soils in Imo State Nigeria to erosion hazard using GIS. International Journal of Environmental Monitoring and Analysis, 3(5), 245-259. https://doi.org/10.11648/j.ijema.20150305.12 DOI: https://doi.org/10.11648/j.ijema.20150305.12
  30. Ufot, U.O., Iren, O.B., and C.U. Chikere-Njoku (2016). Effects of Land use on soil physical and chemical properties in Akokwa area of Imo State, Nigeria. International Journal of Life, Science and Scientific Research, 2(3),1-6. https://doi.org/10.21276/ijlssr.2016.2.3.14 DOI: https://doi.org/10.21276/ijlssr.2016.2.3.14
  31. Wang, B., Zheng, F., Romkas, M. J. M and F. Darboux, (2013). Soil Erodibility for Water Erosion; A Perspective and Chinese Experiences, Journal of Geomorphology, 187, 1-10. https://doi.org/10.1016/j.geo morph.2013.01.018 DOI: https://doi.org/10.1016/j.geomorph.2013.01.018
  32. Webb, N.P., Marshall, N.A., Stringer, L.C., Reed, M.S., Chappell, A., Herrick, J.E. (2017). Land degradation and climate change: Building climate resilience in agriculture. Front. Ecol. Environ., 15, 450-459. https://doi.org/10.1002/fee.1530 DOI: https://doi.org/10.1002/fee.1530