Main Article Content

Abstract

Purpose of the study: The number one killer, cardiovascular disease, has sharply increased in recent years. For early diagnosis and prevention, continuous cardiac monitoring is crucial, and flexible, stretchable electronic devices have become essential instruments to record cardiac activity. Bioelectronics has greatly improved from recent developments in soft, ultrathin bioelectronics that have been made possible by breakthroughs in soft materials and novel device designs.


Methodology: This study focuses on flexible and stretchable materials as well as design strategies for current developments in soft electronics-based wearable and implantable devices for cardiac monitoring.


Main Findings: The mechanical deformability in soft bioelectronics has enabled researchers to obtain high-quality bio-signals and reduce long-term negative effects in vivo. They provide close, long-term integration with cardiac tissues due to their thin and soft characteristics, allowing for continuous, high-quality, and wide coverage in cardiac monitoring.


Applications of this study: This review is anticipated to provide timely and significant information for prospective audiences in the fields of material science and biomedical engineering, who seek a concise summary of key technologies, as well as biomedical fields who may be interested in the clinical implications of soft bioelectronics for cardiac healthcare.


Novelty/Originality of this study: The materials, fabrication techniques, and device designs for flexible and stretchable electronics are reviewed with a particular emphasis on flexible and soft materials.

Keywords

Soft Bioelectronics Cardiovascular Healthcare Wearable and Implantable Device Cardiac Monitoring Flexible and Stretchable Materials

Article Details

How to Cite
Sung, M. (2023). A Review of Soft Electronic Devices Based on Flexible and Stretchable Materials for Cardiac Monitoring. International Journal of Students’ Research in Technology & Management, 11(1), 15-22. https://doi.org/10.18510/ijsrtm.2023.1113

References

  1. Buch, E., Boyle, N. G. & Belott, P. H. (2011). Pacemaker and Defibrillator Lead Extraction. Circulation, 123(11), e378–e380. https://doi.org/10.1161/CIRCULATIONAHA.110.987354 DOI: https://doi.org/10.1161/CIRCULATIONAHA.110.987354
  2. Chiolerio, A., Rivolo, P., Porro, S., Stassi, S., Ricciardi, S., Mandracci, P., Canavese, G., Bejtka, K. & Pirri, C. F. (2014). Inkjet-printed PEDOT:PSS electrodes on plasma-modified PDMS nanocomposites: quantifying plasma treatment hardness. RSC Adv., 4(93), 51477–51485. https://doi.org/10.1039/C4RA06878E DOI: https://doi.org/10.1039/C4RA06878E
  3. Cho, K. W., Sunwoo, S.-H., Hong, Y. J., Koo, J. H., Kim, J. H., Baik, S., Hyeon, T. & Kim, D.-H. (2022). Soft Bioelectronics Based on Nanomaterials. Chemical Reviews, 122(5), 5068–5143. https://doi.org/10.1021/acs.chemrev.1c00531 DOI: https://doi.org/10.1021/acs.chemrev.1c00531
  4. Chung, H.-J., Sulkin, M. S., Kim, J.-S., Goudeseune, C., Chao, H.-Y., Song, J. W., Yang, S. Y., Hsu, Y.-Y., Ghaffari, R., Efimov, I. R. & Rogers, J. A. (2014). Stretchable, Multiplexed pH Sensors With Demonstrations on Rabbit and Human Hearts Undergoing Ischemia. Advanced Healthcare Materials, 3(1), 59–68. https://doi.org/10.1002/adhm.201300124 DOI: https://doi.org/10.1002/adhm.201300124
  5. Chung, H. U., Rwei, A. Y., Hourlier-Fargette, A., Xu, S., Lee, K., Dunne, E. C., Xie, Z., Liu, C., Carlini, A., Kim, D. H., Ryu, D., Kulikova, E., Cao, J., Odland, I. C., Fields, K. B., Hopkins, B., Banks, A., Ogle, C., Grande, D., … Rogers, J. A. (2020). Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nature Medicine, 26(3), 418–429. https://doi.org/10.1038/s41591-020-0792-9 DOI: https://doi.org/10.1038/s41591-020-0792-9
  6. Cui, Z., Han, Y., Huang, Q., Dong, J. & Zhu, Y. (2018). Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale, 10(15), 6806–6811. https://doi.org/10.1039/C7NR09570H DOI: https://doi.org/10.1039/C7NR09570H
  7. Elgendi, M., Fletcher, R., Liang, Y., Howard, N., Lovell, N. H., Abbott, D., Lim, K. & Ward, R. (2019). The use of photoplethysmography for assessing hypertension. Npj Digital Medicine, 2(1), 60. https://doi.org/10.1038/s41746-019-0136-7 DOI: https://doi.org/10.1038/s41746-019-0136-7
  8. Ershad, F., Sim, K., Thukral, A., Zhang, Y. S. & Yu, C. (2019a). Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment. APL Materials, 7(3), 031301. https://doi.org/10.1063/1.5060270 DOI: https://doi.org/10.1063/1.5060270
  9. Ferrari, L. M., Sudha, S., Tarantino, S., Esposti, R., Bolzoni, F., Cavallari, P., Cipriani, C., Mattoli, V. & Greco, F. (2018). Ultraconformable Temporary Tattoo Electrodes for Electrophysiology. Advanced Science, 5(3), 1700771. https://doi.org/10.1002/advs.201700771 DOI: https://doi.org/10.1002/advs.201700771
  10. Gutbrod, S. R., Sulkin, M. S., Rogers, J. A. & Efimov, I. R. (2014a). Patient-specific flexible and stretchable devices for cardiac diagnostics and therapy. Progress in Biophysics and Molecular Biology, 115(2–3), 244–251. https://doi.org/10.1016/j.pbiomolbio.2014.07.011 DOI: https://doi.org/10.1016/j.pbiomolbio.2014.07.011
  11. Hong, Y. J., Jeong, H., Cho, K. W., Lu, N. & Kim, D.-H. (2019). Wearable and Implantable Devices for Cardiovascular Healthcare: from Monitoring to Therapy Based on Flexible and Stretchable Electronics. Advanced Functional Materials, 29(19), 1808247. https://doi.org/https://doi.org/10.1002/adfm.201808247 DOI: https://doi.org/10.1002/adfm.201808247
  12. Kim, D.-H., Ghaffari, R., Lu, N., Wang, S., Lee, S. P., Keum, H., D’Angelo, R., Klinker, L., Su, Y., Lu, C., Kim, Y.-S., Ameen, A., Li, Y., Zhang, Y., de Graff, B., Hsu, Y.-Y., Liu, Z., Ruskin, J., Xu, L., … Rogers, J. A. (2012). Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proceedings of the National Academy of Sciences, 109(49), 19910–19915. https://doi.org/10.1073/pnas.1205923109 DOI: https://doi.org/10.1073/pnas.1205923109
  13. Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S. M., Tao, H., Islam, A., Yu, K. J., Kim, T. -i., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., … Rogers, J. A. (2011). Epidermal Electronics. Science, 333(6044), 838–843. https://doi.org/10.1126/science.1206157 DOI: https://doi.org/10.1126/science.1206157
  14. Kim, Dae-Hyeong, Ghaffari, R., Lu, N. & Rogers, J. A. (2012). Flexible and Stretchable Electronics for Biointegrated Devices. Annual Review of Biomedical Engineering, 14(1), 113–128. https://doi.org/10.1146/annurev-bioeng-071811-150018 DOI: https://doi.org/10.1146/annurev-bioeng-071811-150018
  15. Koo, J. H., Song, J. K., Kim, D. H. & Son, D. (2021). Soft Implantable Bioelectronics. ACS Materials Letters, 3(11), 1528–1540. https://doi.org/10.1021/acsmaterialslett.1c00438 DOI: https://doi.org/10.1021/acsmaterialslett.1c00438
  16. Koo, J. H., Song, J., Yoo, S., Sunwoo, S., Son, D. & Kim, D. (2020). Unconventional Device and Material Approaches for Monolithic Biointegration of Implantable Sensors and Wearable Electronics. Advanced Materials Technologies, 5(10), 2000407. https://doi.org/10.1002/admt.202000407 DOI: https://doi.org/10.1002/admt.202000407
  17. Liu, Y., Norton, J. J. S., Qazi, R., Zou, Z., Ammann, K. R., Liu, H., Yan, L., Tran, P. L., Jang, K.-I., Lee, J. W., Zhang, D., Kilian, K. A., Jung, S. H., Bretl, T., Xiao, J., Slepian, M. J., Huang, Y., Jeong, J.-W. & Rogers, J. A. (2016). Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Science Advances, 2(11), e1601185. https://doi.org/10.1126/sciadv.1601185 DOI: https://doi.org/10.1126/sciadv.1601185
  18. Lochner, C. M., Khan, Y., Pierre, A. & Arias, A. C. (2014). All-organic optoelectronic sensor for pulse oximetry. Nature Communications, 5(1), 5745. https://doi.org/10.1038/ncomms6745 DOI: https://doi.org/10.1038/ncomms6745
  19. Ma, R., Wu, C., Wang, Z. L. & Tsukruk, V. V. (2018). Pop-Up Conducting Large-Area Biographene Kirigami. ACS Nano, 12(10), 9714–9720. https://doi.org/10.1021/acsnano.8b04507 DOI: https://doi.org/10.1021/acsnano.8b04507
  20. Pang, B. J., Lui, E. H., Joshi, S. B., Tacey, M. A., Alison, J., Senevirante, S. K., Cameron, J. D. & Mond, H. G. (2014). Pacing and Implantable Cardioverter Defibrillator Lead Perforation As Assessed by Multiplanar Reformatted ECG-Gated Cardiac Computed Tomography and Clinical Correlates. Pacing and Clinical Electrophysiology, 37(5), 537–545. https://doi.org/10.1111/pace.12307 DOI: https://doi.org/10.1111/pace.12307
  21. Park, J., Choi, S., Janardhan, A. H., Lee, S.-Y., Raut, S., Soares, J., Shin, K., Yang, S., Lee, C., Kang, K.-W., Cho, H. R., Kim, S. J., Seo, P., Hyun, W., Jung, S., Lee, H.-J., Lee, N., Choi, S. H., Sacks, M., … Hwang, H. J. (2016). Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Science Translational Medicine, 8(344), 344ra86. https://doi.org/10.1126/scitranslmed.aad8568 DOI: https://doi.org/10.1126/scitranslmed.aad8568
  22. Rigatelli, G., Santini, F. & Faggian, G. (2012). Past and present of cardiocirculatory assist devices: A comprehensive critical review. Journal of Geriatric Cardiology, 9(4), 389–400. https://doi.org/10.3724/SP.J.1263.2012.05281 DOI: https://doi.org/10.3724/SP.J.1263.2012.05281
  23. Rogers, J. A., Someya, T. & Huang, Y. (2010). Materials and Mechanics for Stretchable Electronics. Science, 327(5973), 1603–1607. https://doi.org/10.1126/science.1182383 DOI: https://doi.org/10.1126/science.1182383
  24. Roubelakis, A., Rawlins, J., Baliulis, G., Olsen, S., Corbett, S., Kaarne, M. & Curzen, N. (2015). Coronary Artery Rupture Caused by Stent Infection. Circulation, 131(14), 1302–1303. https://doi.org/10.1161/CIR20CULATIONAHA.114.014328 DOI: https://doi.org/10.1161/CIRCULATIONAHA.114.014328
  25. Savoji, H., Mohammadi, M. H., Rafatian, N., Toroghi, M. K., Wang, E. Y., Zhao, Y., Korolj, A., Ahadian, S. & Radisic, M. (2019). Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 198(May 2018), 3–26. https://doi.org/10.1016/j.biomaterials.2018.09.036 DOI: https://doi.org/10.1016/j.biomaterials.2018.09.036
  26. Shim, H. J., Sunwoo, S., Kim, Y., Koo, J. H. & Kim, D. (2021). Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 10(17), 2002105. https://doi.org/10.1002 /adhm.202002105 DOI: https://doi.org/10.1002/adhm.202002105
  27. Spittell, P. C. & Hayes, D. L. (1992). Venous Complications After Insertion of a Transvenous Pacemaker. Mayo Clinic Proceedings, 67(3), 258–265. https://doi.org/10.1016/S0025-6196(12)60103-7 DOI: https://doi.org/10.1016/S0025-6196(12)60103-7
  28. Sunwoo, S. H., Lee, J. S., Bae, S., Shin, Y. J., Kim, C. S., Joo, S. Y., Choi, H. S., Suh, M., Kim, S. W., Choi, Y. J. & Kim, T. (2019). Chronic and acute stress monitoring by electrophysiological signals from adrenal gland. Proceedings of the National Academy of Sciences, 116(4), 1146–1151. https://doi.org/10.1073/pn as.1806392115 DOI: https://doi.org/10.1073/pnas.1806392115
  29. Viventi, J., Kim, D.-H., Moss, J. D., Kim, Y.-S., Blanco, J. A., Annetta, N., Hicks, A., Xiao, J., Huang, Y., Callans, D. J., Rogers, J. A. & Litt, B. (2010). A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology. Science Translational Medicine, 2(24), 24ra22. https://doi.org/10.1126/ scitranslmed.3000738 DOI: https://doi.org/10.1126/scitranslmed.3000738
  30. Wu, H., Yang, G., Zhu, K., Liu, S., Guo, W., Jiang, Z. & Li, Z. (2021). Materials, Devices, and Systems of On‐Skin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Advanced Science, 8(2), 2001938. https://doi.org/10.1002/advs.202001938 DOI: https://doi.org/10.1002/advs.202001938
  31. Xu, L., Gutbrod, S. R., Bonifas, A. P., Su, Y., Sulkin, M. S., Lu, N., Chung, H.-J., Jang, K.-I., Liu, Z., Ying, M., Lu, C., Webb, R. C., Kim, J.-S., Laughner, J. I., Cheng, H., Liu, Y., Ameen, A., Jeong, J.-W., Kim, G.-T., … Rogers, J. A. (2014). 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nature Communications, 5(1), 3329. https://doi.org/10.1038/nco mms4329 DOI: https://doi.org/10.1038/ncomms4329
  32. Xu, L., Gutbrod, S. R., Ma, Y., Petrossians, A., Liu, Y., Webb, R. C., Fan, J. A., Yang, Z., Xu, R., Whalen, J. J., Weiland, J. D., Huang, Y., Efimov, I. R. & Rogers, J. A. (2015). Materials and Fractal Designs for 3D Multifunctional Integumentary Membranes with Capabilities in Cardiac Electrotherapy. Advanced Materials, 27(10), 1731–1737. https://doi.org/10.1002/adma.201405017 DOI: https://doi.org/10.1002/adma.201405017
  33. Yamamoto, Y., Harada, S., Yamamoto, D., Honda, W., Arie, T., Akita, S. & Takei, K. (2016). Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Science Advances, 2(11). https://doi.org/10.1126/sciadv.1601473 DOI: https://doi.org/10.1126/sciadv.1601473
  34. Yoder, M. A., Yan, Z., Han, M., Rogers, J. A. & Nuzzo, R. G. (2018). Semiconductor Nanomembrane Materials for High-Performance Soft Electronic Devices. Journal of the American Chemical Society, 140(29), 9001–9019. https://doi.org/10.1021/jacs.8b04225 DOI: https://doi.org/10.1021/jacs.8b04225
  35. Zhang, Y., Xu, S., Fu, H., Lee, J., Su, J., Hwang, K.-C., Rogers, J. A. & Huang, Y. (2013). Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter, 9(33), 8062. https://doi.org/10.1039/c3sm51360b DOI: https://doi.org/10.1039/c3sm51360b