Main Article Content


Purpose of the study: The number one killer, cardiovascular disease, has sharply increased in recent years. For early diagnosis and prevention, continuous cardiac monitoring is crucial, and flexible, stretchable electronic devices have become essential instruments to record cardiac activity. Bioelectronics has greatly improved from recent developments in soft, ultrathin bioelectronics that have been made possible by breakthroughs in soft materials and novel device designs.

Methodology: This study focuses on flexible and stretchable materials as well as design strategies for current developments in soft electronics-based wearable and implantable devices for cardiac monitoring.

Main Findings: The mechanical deformability in soft bioelectronics has enabled researchers to obtain high-quality bio-signals and reduce long-term negative effects in vivo. They provide close, long-term integration with cardiac tissues due to their thin and soft characteristics, allowing for continuous, high-quality, and wide coverage in cardiac monitoring.

Applications of this study: This review is anticipated to provide timely and significant information for prospective audiences in the fields of material science and biomedical engineering, who seek a concise summary of key technologies, as well as biomedical fields who may be interested in the clinical implications of soft bioelectronics for cardiac healthcare.

Novelty/Originality of this study: The materials, fabrication techniques, and device designs for flexible and stretchable electronics are reviewed with a particular emphasis on flexible and soft materials.


Soft Bioelectronics Cardiovascular Healthcare Wearable and Implantable Device Cardiac Monitoring Flexible and Stretchable Materials

Article Details

How to Cite
Sung, M. (2023). A Review of Soft Electronic Devices Based on Flexible and Stretchable Materials for Cardiac Monitoring. International Journal of Students’ Research in Technology & Management, 11(1), 15–22.


  1. Buch, E., Boyle, N. G. & Belott, P. H. (2011). Pacemaker and Defibrillator Lead Extraction. Circulation, 123(11), e378–e380. DOI:
  2. Chiolerio, A., Rivolo, P., Porro, S., Stassi, S., Ricciardi, S., Mandracci, P., Canavese, G., Bejtka, K. & Pirri, C. F. (2014). Inkjet-printed PEDOT:PSS electrodes on plasma-modified PDMS nanocomposites: quantifying plasma treatment hardness. RSC Adv., 4(93), 51477–51485. DOI:
  3. Cho, K. W., Sunwoo, S.-H., Hong, Y. J., Koo, J. H., Kim, J. H., Baik, S., Hyeon, T. & Kim, D.-H. (2022). Soft Bioelectronics Based on Nanomaterials. Chemical Reviews, 122(5), 5068–5143. DOI:
  4. Chung, H.-J., Sulkin, M. S., Kim, J.-S., Goudeseune, C., Chao, H.-Y., Song, J. W., Yang, S. Y., Hsu, Y.-Y., Ghaffari, R., Efimov, I. R. & Rogers, J. A. (2014). Stretchable, Multiplexed pH Sensors With Demonstrations on Rabbit and Human Hearts Undergoing Ischemia. Advanced Healthcare Materials, 3(1), 59–68. DOI:
  5. Chung, H. U., Rwei, A. Y., Hourlier-Fargette, A., Xu, S., Lee, K., Dunne, E. C., Xie, Z., Liu, C., Carlini, A., Kim, D. H., Ryu, D., Kulikova, E., Cao, J., Odland, I. C., Fields, K. B., Hopkins, B., Banks, A., Ogle, C., Grande, D., … Rogers, J. A. (2020). Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nature Medicine, 26(3), 418–429. DOI:
  6. Cui, Z., Han, Y., Huang, Q., Dong, J. & Zhu, Y. (2018). Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale, 10(15), 6806–6811. DOI:
  7. Elgendi, M., Fletcher, R., Liang, Y., Howard, N., Lovell, N. H., Abbott, D., Lim, K. & Ward, R. (2019). The use of photoplethysmography for assessing hypertension. Npj Digital Medicine, 2(1), 60. DOI:
  8. Ershad, F., Sim, K., Thukral, A., Zhang, Y. S. & Yu, C. (2019a). Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment. APL Materials, 7(3), 031301. DOI:
  9. Ferrari, L. M., Sudha, S., Tarantino, S., Esposti, R., Bolzoni, F., Cavallari, P., Cipriani, C., Mattoli, V. & Greco, F. (2018). Ultraconformable Temporary Tattoo Electrodes for Electrophysiology. Advanced Science, 5(3), 1700771. DOI:
  10. Gutbrod, S. R., Sulkin, M. S., Rogers, J. A. & Efimov, I. R. (2014a). Patient-specific flexible and stretchable devices for cardiac diagnostics and therapy. Progress in Biophysics and Molecular Biology, 115(2–3), 244–251. DOI:
  11. Hong, Y. J., Jeong, H., Cho, K. W., Lu, N. & Kim, D.-H. (2019). Wearable and Implantable Devices for Cardiovascular Healthcare: from Monitoring to Therapy Based on Flexible and Stretchable Electronics. Advanced Functional Materials, 29(19), 1808247. DOI:
  12. Kim, D.-H., Ghaffari, R., Lu, N., Wang, S., Lee, S. P., Keum, H., D’Angelo, R., Klinker, L., Su, Y., Lu, C., Kim, Y.-S., Ameen, A., Li, Y., Zhang, Y., de Graff, B., Hsu, Y.-Y., Liu, Z., Ruskin, J., Xu, L., … Rogers, J. A. (2012). Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proceedings of the National Academy of Sciences, 109(49), 19910–19915. DOI:
  13. Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S. M., Tao, H., Islam, A., Yu, K. J., Kim, T. -i., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., … Rogers, J. A. (2011). Epidermal Electronics. Science, 333(6044), 838–843. DOI:
  14. Kim, Dae-Hyeong, Ghaffari, R., Lu, N. & Rogers, J. A. (2012). Flexible and Stretchable Electronics for Biointegrated Devices. Annual Review of Biomedical Engineering, 14(1), 113–128. DOI:
  15. Koo, J. H., Song, J. K., Kim, D. H. & Son, D. (2021). Soft Implantable Bioelectronics. ACS Materials Letters, 3(11), 1528–1540. DOI:
  16. Koo, J. H., Song, J., Yoo, S., Sunwoo, S., Son, D. & Kim, D. (2020). Unconventional Device and Material Approaches for Monolithic Biointegration of Implantable Sensors and Wearable Electronics. Advanced Materials Technologies, 5(10), 2000407. DOI:
  17. Liu, Y., Norton, J. J. S., Qazi, R., Zou, Z., Ammann, K. R., Liu, H., Yan, L., Tran, P. L., Jang, K.-I., Lee, J. W., Zhang, D., Kilian, K. A., Jung, S. H., Bretl, T., Xiao, J., Slepian, M. J., Huang, Y., Jeong, J.-W. & Rogers, J. A. (2016). Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Science Advances, 2(11), e1601185. DOI:
  18. Lochner, C. M., Khan, Y., Pierre, A. & Arias, A. C. (2014). All-organic optoelectronic sensor for pulse oximetry. Nature Communications, 5(1), 5745. DOI:
  19. Ma, R., Wu, C., Wang, Z. L. & Tsukruk, V. V. (2018). Pop-Up Conducting Large-Area Biographene Kirigami. ACS Nano, 12(10), 9714–9720. DOI:
  20. Pang, B. J., Lui, E. H., Joshi, S. B., Tacey, M. A., Alison, J., Senevirante, S. K., Cameron, J. D. & Mond, H. G. (2014). Pacing and Implantable Cardioverter Defibrillator Lead Perforation As Assessed by Multiplanar Reformatted ECG-Gated Cardiac Computed Tomography and Clinical Correlates. Pacing and Clinical Electrophysiology, 37(5), 537–545. DOI:
  21. Park, J., Choi, S., Janardhan, A. H., Lee, S.-Y., Raut, S., Soares, J., Shin, K., Yang, S., Lee, C., Kang, K.-W., Cho, H. R., Kim, S. J., Seo, P., Hyun, W., Jung, S., Lee, H.-J., Lee, N., Choi, S. H., Sacks, M., … Hwang, H. J. (2016). Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Science Translational Medicine, 8(344), 344ra86. DOI:
  22. Rigatelli, G., Santini, F. & Faggian, G. (2012). Past and present of cardiocirculatory assist devices: A comprehensive critical review. Journal of Geriatric Cardiology, 9(4), 389–400. DOI:
  23. Rogers, J. A., Someya, T. & Huang, Y. (2010). Materials and Mechanics for Stretchable Electronics. Science, 327(5973), 1603–1607. DOI:
  24. Roubelakis, A., Rawlins, J., Baliulis, G., Olsen, S., Corbett, S., Kaarne, M. & Curzen, N. (2015). Coronary Artery Rupture Caused by Stent Infection. Circulation, 131(14), 1302–1303. DOI:
  25. Savoji, H., Mohammadi, M. H., Rafatian, N., Toroghi, M. K., Wang, E. Y., Zhao, Y., Korolj, A., Ahadian, S. & Radisic, M. (2019). Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 198(May 2018), 3–26. DOI:
  26. Shim, H. J., Sunwoo, S., Kim, Y., Koo, J. H. & Kim, D. (2021). Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 10(17), 2002105. /adhm.202002105 DOI:
  27. Spittell, P. C. & Hayes, D. L. (1992). Venous Complications After Insertion of a Transvenous Pacemaker. Mayo Clinic Proceedings, 67(3), 258–265. DOI:
  28. Sunwoo, S. H., Lee, J. S., Bae, S., Shin, Y. J., Kim, C. S., Joo, S. Y., Choi, H. S., Suh, M., Kim, S. W., Choi, Y. J. & Kim, T. (2019). Chronic and acute stress monitoring by electrophysiological signals from adrenal gland. Proceedings of the National Academy of Sciences, 116(4), 1146–1151. as.1806392115 DOI:
  29. Viventi, J., Kim, D.-H., Moss, J. D., Kim, Y.-S., Blanco, J. A., Annetta, N., Hicks, A., Xiao, J., Huang, Y., Callans, D. J., Rogers, J. A. & Litt, B. (2010). A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology. Science Translational Medicine, 2(24), 24ra22. scitranslmed.3000738 DOI:
  30. Wu, H., Yang, G., Zhu, K., Liu, S., Guo, W., Jiang, Z. & Li, Z. (2021). Materials, Devices, and Systems of Onâ€Skin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Advanced Science, 8(2), 2001938. DOI:
  31. Xu, L., Gutbrod, S. R., Bonifas, A. P., Su, Y., Sulkin, M. S., Lu, N., Chung, H.-J., Jang, K.-I., Liu, Z., Ying, M., Lu, C., Webb, R. C., Kim, J.-S., Laughner, J. I., Cheng, H., Liu, Y., Ameen, A., Jeong, J.-W., Kim, G.-T., … Rogers, J. A. (2014). 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nature Communications, 5(1), 3329. mms4329 DOI:
  32. Xu, L., Gutbrod, S. R., Ma, Y., Petrossians, A., Liu, Y., Webb, R. C., Fan, J. A., Yang, Z., Xu, R., Whalen, J. J., Weiland, J. D., Huang, Y., Efimov, I. R. & Rogers, J. A. (2015). Materials and Fractal Designs for 3D Multifunctional Integumentary Membranes with Capabilities in Cardiac Electrotherapy. Advanced Materials, 27(10), 1731–1737. DOI:
  33. Yamamoto, Y., Harada, S., Yamamoto, D., Honda, W., Arie, T., Akita, S. & Takei, K. (2016). Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Science Advances, 2(11). DOI:
  34. Yoder, M. A., Yan, Z., Han, M., Rogers, J. A. & Nuzzo, R. G. (2018). Semiconductor Nanomembrane Materials for High-Performance Soft Electronic Devices. Journal of the American Chemical Society, 140(29), 9001–9019. DOI:
  35. Zhang, Y., Xu, S., Fu, H., Lee, J., Su, J., Hwang, K.-C., Rogers, J. A. & Huang, Y. (2013). Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter, 9(33), 8062. DOI: