Main Article Content

Abstract

The catalytic oxidation with Cerium (IV) in aqueous solution offers an economic and environmentally safe alternative for oxidation reactions performed in synthetic laboratories and chemical industry. In this paper we have shown that the size of the copper nanoparticle is responsible for the yield of chemical change. The copper catalyst (non-nano) powder showed 21% conversion of naphthalene to α-naphthol in 3 min under our experimental conditions. Same quantity of copper nanoparticles (size, ~ 60 nm diameter) ready by turn PVP-EG capping showed 33% conversion of  naphthalene to α-naphthol that inflated to concerning 43% when 8 nm diameter capped copper nanoparticles are used. Surprisingly, 5 nm size copper nanoparticles showed no change in the yield of about 41%. [Ce(IV)-Cu(II)sulphate] system in our experimental work shows 43%, 97%, and 96% yields for oxidation of naphthalene, phenanthrene, and anthracene respectively in the presence of copper nanoparticles.

Keywords

Aromatic hydrocarbons Cerium (IV) copper nanoparticles PVP-EG capping surface area

Article Details

How to Cite
Srivastava, M. (2015). SYNTHESIS AND CHARACTERIZATION OF COPPER NANO PARTICLES: APPLICATION, IN FIELD OF OXIDATION OF AROMATIC HYDROCARBONS CERIUM (IV) SULPHATE UNDER MICROWAVE IRRADIATION. Green Chemistry & Technology Letters, 1(01), 06–16. https://doi.org/10.18510/gctl.2015.112

References

  1. Tiwari, A. Intelligent nanomaterials for prospective nanotechnology, Adv. Mat. Lett. 2012, 3, 1. DOI: https://doi.org/10.5185/amlett.2012.13001
  2. Singh, P.; Katyal, A.; Kalra, R.; Chandra, R. Copper nanoparticles in an ionic liquid: an efficient catalyst for the synthesis of bis-(4-hydroxy-2-oxiothiazolyl)methanes, Tetrahedron Lett. 2008, 49, 727.
  3. Dang, T.M.D.; T Le, .T.T.; Fribourg-Blanc, E.; Dang, M.C. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci: Nanosci. Nanotechnol. 2011, 2, 015009. DOI: https://doi.org/10.1088/2043-6262/2/1/015009
  4. Singh, P.; Katyal, A.; Kalra, R.; Chandra, R. Copper nanoparticles in an ionic liquid: an efficient catalyst for the synthesis of bis-(4-hydroxy-2-oxiothiazolyl)methanes, Tetrahedron Lett. 2008, 49, 727. DOI: https://doi.org/10.1016/j.tetlet.2007.11.106
  5. Narayanan, R. and El-Sayed,. M.A. Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: Electron-transfer reaction. J. Am. Chem. 2004, 126, 7194–7195. DOI: https://doi.org/10.1021/ja0486061
  6. Zhu H, Zhang C and Yin Y , Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size,†Nanotechnology, Nanotechnology, 2005, 16, 3079 . DOI: https://doi.org/10.1088/0957-4484/16/12/059
  7. P.K. Tandon, Manisha Purwar, Priy B. Dwivedi and Manish Srivastava, Kinetics of iridium(III) catalyzed oxidation of benzaldehyde and p-nitro benzaldehyde by Cerium(IV) in aqueous acidic medium.Transition Metal Chemistry,2008, 33, 791 – 795.
  8. P.K. Tandon, Manisha Purwar, Satpal Singh, Nidhi Srivastava and Manish Srivastava. Graphical separation of uncatalyzed reaction in iridium(III) catalyzed oxidation of cinnamaldehyde by cerium(IV) in aqueous acid medium. J. Mol. Catalyst A: Chemical, 2008, 293, 39 – 44. DOI: https://doi.org/10.1016/j.molcata.2008.07.007
  9. P.K. Tandon, Manish Srivastava, S. B. Singh and Satpal Singh, Liquid phase and microwave assisted oxidation of some hydrocarbons, aromatic aldehydes and phenols by cerium(IV) catalyzed by iridium(III) in acidic medium. Synthetic communications. 2008, 38: 13, 2125 – 2137. DOI: https://doi.org/10.1080/00397910802028796
  10. P.K. Tandon, Manish Srivastava, S. B. Singh and Nidhi Srivastava. Liquid phase and solvent less oxidation of cyclohexane, benzene and other hydrocarbons by cerium(IV) catalyzed by iridium(III) in acidic medium. Synthetic communication, 2008, 38: 18, 3183- 3192. DOI: https://doi.org/10.1080/00397910802109265
  11. P.K. Tandon, Manisha Purwar, Priy B. Dwivedi and Manish Srivastava. Kinetics of iridium(III) catalyzed oxidation of benzaldehyde and p-nitro benzaldehyde by Cerium(IV) in aqueous acidic medium.Transition Metal Chemistry, 2008, 33, 791 – 795. DOI: https://doi.org/10.1007/s11243-008-9112-9
  12. P.K.Tandon, Manish Srivastava, Santosh Kumar, Satpal Singh, Iridium(III) catalyzed oxidation of toluene and ethyl benzene by cerium(IV) in aqueous acidic medium, J. Mol. Catal A. Chemical, 2009, 304, 101-106. DOI: https://doi.org/10.1016/j.molcata.2009.01.035
  13. Day M C & Jr Selbin J, Theoretical Inorganic Chemistry (Reinhold Publishing Corporation, New York) 1964, p. 226.
  14. Vogel AI. A text Book of quantitative Inorganic analysis.3rd Ed.Longmans: London; 1961.
  15. Chinn LJ, Selection of oxidants in synthesis, oxidation at carbon atoms.: Marcel Dekker, New York; 1971.
  16. Belew, J. S. In "Oxidation: Techniques and Applications in Organic Synthesis"; Augustine, R. L., Ed.; Marcel Dekker, Inc.: New York, 1969; Vol. 1, p 294.
  17. Evans WL, Oxidation of Carbohydrate with alkaline permanganatc silver oxide and copper acetate. Chem.Rev.1929; 6: 281-284. DOI: https://doi.org/10.1021/cr60023a001
  18. Butterworth R F,Haneesian S. Selected method of oxidation in carbohydrate chemistry. Sythesis, 1971; 7-78. DOI: https://doi.org/10.1055/s-1971-21670
  19. Heyns K, Paulsen H. The mechanism of carbohydrate oxidation. Adv. carbohydr. Chem., 1962; 17: 169-176. DOI: https://doi.org/10.1016/S0096-5332(08)60136-8
  20. Narayanan, R.; El-Sayed, M. A., Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability. The Journal of Physical Chemistry B 2005, 109, 12663-12676. DOI: https://doi.org/10.1021/jp051066p
  21. Astruc, D., Nanoparticles and catalysis. Wiley-VCH: Weinheim, 2008; p xxiii, 640 p.
  22. Jiang, Z. J.; Liu, C. Y.; Sun, L. W., Catalytic properties of silver nanoparticles supported on silica spheres. The journal of physical chemistry. B 2005, 109, 1730-5. DOI: https://doi.org/10.1021/jp046032g
  23. Veeresh Seregar, T.M.Veeresh, Sharanappa T. Nandibewoor, Osmium(VIII) catalysed oxidation of l-leucine by a new oxidant, diperiodatoargentate (III) in aqueous alkaline medium, J. Mole Catal A: Chem. 2007, 271, 253-260. DOI: https://doi.org/10.1016/j.molcata.2007.03.007
  24. S. Maria Rayappan, D. Easwaramurthy, M. Palanichamy, V. Murugesan, Kinetics of Ag(I) catalyzed oxidation of amino acids by peroxomonosulphate, Inorganic Chemistry Communications. 2010, 13, 131-133. DOI: https://doi.org/10.1016/j.inoche.2009.10.014
  25. K. Sharanabasamma, Mahantesh A. Angadi and Suresh M. Tuwar, Kinetics and Mechanism of Ruthenium (III) Catalyzed Oxidation of LProline by Hexacyano- -ferrate(III) in Aqueous Alkali, The Open Catalysis Journal. 2011, 4, 1-8. DOI: https://doi.org/10.2174/1876214X01104010001
  26. Veeresh Seregar, T.M. Veeresh, Sharanappa T. Nandibewoor, Ruthenium (III) catalysed oxidation of L-leucine by a new oxidant, diperiodatoargentate(III) in aqueous alkaline medium, Polyhedron. 2007, 26, 1731-1739. DOI: https://doi.org/10.1016/j.poly.2006.12.021
  27. B. S. Berlett, P. B. Chock, M. B. Yim, And E. R. Stadtman, Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide, Biochemistry. 1990, 87, 389-393. DOI: https://doi.org/10.1073/pnas.87.1.389
  28. J. Santhanalakshmi and P. Venkatesan,Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y, J. Nanopart. Res. 2011, 13, 479-490. DOI: https://doi.org/10.1007/s11051-010-9966-6
  29. Xiaohua Huang, Ivan H. El-Sayed, Xiaobing Yi , Mostafa A. El-Sayed, Gold nanoparticles: Catalyst for the oxidation of NADH to NAD+, J. Photochem. Photobiol.B. 2005, 81, 76-83. DOI: https://doi.org/10.1016/j.jphotobiol.2005.05.010
  30. Qian Wang, HuijingQian , Yueping Yang , Zhen Zhang , CissokoNaman , Xinhua Xu, Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles, J. Contam. Hydrol. 2010, 114, 35-42. DOI: https://doi.org/10.1016/j.jconhyd.2010.02.006
  31. Aili Wang, Hengbo Yin, Huihong Lu, JinjuanXue, Min Ren, and Tingshun Jiang, Effect of Organic Modifiers on the Structure of Nickel Nanoparticles and Catalytic Activity in the Hydrogenation of p-Nitrophenol to p-Aminophenol, Langmuir. 2009, 25, 12736-12741. DOI: https://doi.org/10.1021/la901815b
  32. Aili Wang, Hengbo Yin, Huihong Lu, JinjuanXue, Min Ren, Tingshun Jiang, Catalytic activity of nickel nanoparticles in hydrogenation of p-nitrophenol to p- aminophenol Catalysis Communications. 2009, 10, 2060-2064. DOI: https://doi.org/10.1016/j.catcom.2009.07.031
  33. Sushmitha Sundar, Joydip Kundu and Subhas C Kundu, Biopolymeric nanoparticles, Sci. Technol. Adv. Mater. 2010, 11, 014104. DOI: https://doi.org/10.1088/1468-6996/11/1/014104
  34. JieCao,RuifengXu, Hua Tang, Suisi Tang, Minhua Cao,Synthesis of monodispersed CMC-stabilized Fe–Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene, Science of the Total Environment, 2011, 409, 2336–2341. DOI: https://doi.org/10.1016/j.scitotenv.2011.02.045
  35. Moreno-Man˜ as, M.; Pleixats, R.; Villarroya, S. Fluorous Phase Soluble Palladium Nanoparticles as Recoverable Catalysts for Suzuki Cross-Coupling and Heck Reactions. Organometallics, 2001, 20, 4524–4528. DOI: https://doi.org/10.1021/om010442z
  36. Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. Transition-metal nanoparticles in imidazolium ionic liquids: Recyclable catalysts for biphasic hydrogenation reactions. J. Am. Chem. Soc. 2002, 124, 4228–4229. DOI: https://doi.org/10.1021/ja025818u
  37. Thathagar, M. B.; Beckers, J.; Rothenberg, G. Copper-catalyzed Suzuki cross-coupling using mixed nanocluster catalysts. J. Am. Chem. Soc. 2002, 124, 11858–11859. DOI: https://doi.org/10.1021/ja027716+

Most read articles by the same author(s)