Main Article Content

Abstract

The overview of this review article depends on the various techniques of formation of silver nanoparticles and different application take place in medicinal point of view.


The branch of nanotechnology plays an important role in medical science research. In this different nanoparticle is synthesized which have various application in gene delivery, drug delivery and reduce the toxic effect of drugs in the human body and also act as an antibacterial in pharmaceutical industries.


In recent days silver nanoparticles have had an important role due to their optical and catalytic properties. A large number of different particles or methods are used to prepare the different shapes of silver nanoparticles used in drug delivery. Different shapes of nanoparticles have increased their demand in various researches depend on medicinal uses. Silver nanoparticle preparation can be studied by 3 techniques related to irradiations, chemicals, bacteria, fungi, and plants. 


Nanomedicine have a large number of advantages in treating various chronic diseases by using biological agents, chemotherapeutic agents, and used to deliver the drug to a specific site of the body. A silver nanoparticle is prepared for detection tool to detect the adverse effect of diseases on the target cell. Nanoparticles are used in cancer therapy to remove the damaged cell of the body. 

Keywords

Fabrication of Silver Nanoparticle by Physical Chemical, and Green approach Application in Nanomedicine Conclusion and Future Aspects

Article Details

How to Cite
Sahajwani, R., Srivastava, M., Srivastava, A., Parashar, C., Singh, A., Kaur, P., & Dwivedi, J. (2021). Advanced Materials in Cancer Therapy. Green Chemistry & Technology Letters, 7(2), 01-17. https://doi.org/10.18510/gctl.2021.721

References

  1. Duncan R., Izzo L. (2005). Dendrimer biocompatibility and toxicity. Drug Deliv Rev, 57, 2215-37. DOI: https://doi.org/10.1016/j.addr.2005.09.019
  2. Ferrari M. (2005). Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 5, 161-71. DOI: https://doi.org/10.1038/nrc1566
  3. Fattal, E., Vauthier, C., Aynie, I, et al.(1998). Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release,, 53,137-43. DOI: https://doi.org/10.1016/S0168-3659(97)00246-0
  4. Krishna, R., Pandit, J.K. (1996). Carboxymethylcellulose-sodium based transdermal drug delivery system for propranolol. J Pharm Pharmacol, 48, 367-70. DOI: https://doi.org/10.1111/j.2042-7158.1996.tb05934.x
  5. Thacharodi, D., Rao, K.P. (1996). Rate-controlling biopolymer membranes as transdermal delivery systems for nifedipine: Development and in vitro evaluations. Biomaterials, 17, 1307-11. DOI: https://doi.org/10.1016/S0142-9612(96)80007-X
  6. Bhat, M., Shenoy, D.S., Udupa, N., Srinivas, C.R. (1995). Optimization of delivery of betamethasone - dipropionate from skin preparation. Indian Drugs, 32, 211-214.
  7. Panchagnula, R. (1997). Transdermal delivery of drugs. Indian J Pharmacol, 29,140-56.
  8. The Royal Society and The Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties, London, UK: 2004.
  9. Cascone, M. G., Lazzeri, L., Carmignani, C., et al.(2002). Gelatin nanoparticles produced by a simple W/O emulsion as a delivery system for methotrexate. Mat Sc: Mat in Med, 13, 523-6. DOI: https://doi.org/10.1023/A:1014791327253
  10. Baran, E. T., Özer, N., Hasirci, V. (2002). In vivo half-life of nanoencapsulation L-asparaginase. J Mat Sc: Mat in Med, 13, 1113-1121. DOI: https://doi.org/10.1023/A:1021125617828
  11. Kipp, J. E. (2004). The role of solid nanoparticle technology in the parental delivery of poorly water-soluble drugs. Int J Pharm, 284, 109-122. DOI: https://doi.org/10.1016/j.ijpharm.2004.07.019
  12. Bamrungsap, S., Zhao, Z., Chen, T., Wang, L. (2012). Nanotechnology in Therapeutics A Focus on Nanoparticles as a Drug Delivery System. Nano medicine, 8, 1253-1271. DOI: https://doi.org/10.2217/nnm.12.87
  13. Safari, J. and Zarnegar, Z. (2017). Advanced drug delivery systems Nanotechnology of health design. Journal of Saudi Chemical Society, 18, 85-91. DOI: https://doi.org/10.1016/j.jscs.2012.12.009
  14. Sakamotoa, J. H., Vena, De., Godina, A. L.. Blancoa, B., Serdaa, E., Grattonia, A., Ziemysa, A., Bouamrania, A., Hua, T., Ranganathana, S. I., Martineza, J. O., Smida, C. A., Buchanan, D. R. M., Leea, D. S. Y, Srinivasan, D. S., Landry, M., Meyna, A., Tasciottia, E., Liua, X.., Decuzzia, P. E. (2010). Enabling individual izedtherapy through nanotechnology. Pharmacol Res, 62, 57-89. DOI: https://doi.org/10.1016/j.phrs.2009.12.011
  15. Khomutov, G., Gubin, S. (2002). Interfacial synthesis of noble metal nanoparticle. Materials Science and Engineering, 22,141-146. DOI: https://doi.org/10.1016/S0928-4931(02)00162-5
  16. Oliveira, M., Ugarte, D., Zanchet, D., Zarbin, A. J. G. (2005). Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of Colloid and Interface Science, 292, 429-435. DOI: https://doi.org/10.1016/j.jcis.2005.05.068
  17. Egorova, E.M., Revina, A. (2000). A Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 168, 87-91. DOI: https://doi.org/10.1016/S0927-7757(99)00513-0
  18. Pileni, M.P. (1997). Nanosized particles made in colloidal assemblies. ACS Publication, 13, 3266-3276. DOI: https://doi.org/10.1021/la960319q
  19. Leff, D.V., Ohara, P.C., Heath, J.R., Gelbart, W.M. (1995). Thermodynamic control of gold nanocrystal size: Experiment and theory. Journal of Materials Science, 99, 7036-7041. DOI: https://doi.org/10.1021/j100018a041
  20. Butenko, A.V., Chubakov, P.A., Danilova, Yu. E., Karpov, S.V., Popov, A.K., Rautian, S.G., Safonov, V.P., Slabko, V.V., Shalaev. V.M., Stockman, M.I. (1990). Nonlinear optics of metal fractal clusters. Zeitschrift für Physik D Atoms,Molecules and Clusters, 17, 283-289. DOI: https://doi.org/10.1007/BF01437368
  21. Petit, C., Lixon, P., Pileni, M.-P. (1993). In situ synthesis of silver nanocluster in AOT reverse micelles. Journal of Physical Chemistry, 97, 12974-12983. DOI: https://doi.org/10.1021/j100151a054
  22. Lisiecki, I., Pileni, M.P. (1995). Copper metallic particles synthesized "in situ" in reverse micelles: Influence of various parameters on the size of the particles. J. Phys. Chem, 99, 5077-5082. DOI: https://doi.org/10.1021/j100014a030
  23. Templeton, A.C., Wuelfing, W.P., Murray, R.W. (2000). Monolayer-protected cluster molecules. Acc. Chem. Res, 33, 27-36. DOI: https://doi.org/10.1021/ar9602664
  24. Yeo, S.Y., Lee, H.J., Jeong, S.H. (2003). Preparation of nanocomposite fibers for permanent antibacterial effect. Journal of Materials Science, 38, 2143-2147.
  25. Chimentão, R.J., Kirm, I., Medina, F., Rodríguez, X., Cesteros, Y., Salagre, P., Sueiras, J.E. (2004). Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Chemical Communications, 4, 846-847.
  26. He, B., Tan, J.J., Liew, K.Y., Liu, H. (2004). Synthesis of size-controlled Ag nanoparticles. Journal of Molecular Catalysis, 221, 121-126. DOI: https://doi.org/10.1016/j.molcata.2004.06.025
  27. Amato, E., Diaz-Fernandez, YA., Taglietti, A, et al. (2011). Synthesis, characterization and antibacterial activity against gram-positive and gram-negative bacteria of biomimetically coated silver nanoparticles. Langmuir, 27, 9165-9173. DOI: https://doi.org/10.1021/la201200r
  28. Parveen, S., Misra. R., Sahoo. S.K. (2012). Nanoparticles: A boon to drug delivery, therapeutics, diagnostics, and imaging.Nanomedicine: Nanotechnology. Biology, and Medicine, 8,147-166. DOI: https://doi.org/10.1016/j.nano.2011.05.016
  29. Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S.R.K., Muniyandi, J., Hariharan, N., Eom, S.H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74, 328-335. DOI: https://doi.org/10.1016/j.colsurfb.2009.07.048
  30. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28(4), 313-318.
  31. Hill, W.R., Pillsbury, D.M. (1939). Argyria: The Pharmacology of Silver. Baltimore, 8, 128-132.
  32. Yeo, S.Y., Lee, H.J., Jeong, S.H. (2003). Preparation of nanocomposite fibers for permanent antibacterial effect. Journal of Materials Science, 38, 2143-2147. DOI: https://doi.org/10.1023/A:1023767828656
  33. Chimentão, R.J., Kirm, I., Medina, F., Rodríguez, X., Cesteros, Y., Salagre, P., Sueiras, J.E. (2004). Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Physical Chemistry Chemical Physics, 4, 846-847. DOI: https://doi.org/10.1039/B400762J
  34. Amendola, V., Meneghetti, M. (2009). Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem, 11, 3805-382. DOI: https://doi.org/10.1039/b900654k
  35. Iravani, S., Korbekandi, H., Mirmohammadi, S.V., Zolfaghari, B. (2014). Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci, 9, 385-40
  36. Magnusson, M.H., Deppert, K., Malm, J.-O., Bovin, J.-O., Samuelson, L. (1999). Gold nanoparticles: Production, reshaping, and thermal charging. Journal of Nanoparticle Research, 1, 243-251.
  37. Schmidt-Ott, A.(1998). New approaches to in situ characterization of ultrafine agglomerates. Journal of Aerosol Science, 19, 559-563. DOI: https://doi.org/10.1016/0021-8502(88)90207-8
  38. Gurav, A.S., Kodas, T.T., Wang, L.-M., Kauppinen, E.I., Joutsensaari, J. (1994). Generation of nanometer-size fullerene particles via vapor condensation. Chemical Physics Letters, 218, 304-308. DOI: https://doi.org/10.1016/0009-2614(93)E1491-X
  39. Kruis F., Fissan H., Rellinghaus B. (2000). Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Materials Science and Eingerring: B, 69, 329-334. DOI: https://doi.org/10.1016/S0921-5107(99)00298-6
  40. Magnusson, M., Deppert, K., Malm, J., Bovin, J., Samuelson, L. (1999). Gold nanoparticles: production, reshaping, and thermal charging. J Nanoparticle Res, 1, 243-251. DOI: https://doi.org/10.1023/A:1010012802415
  41. Jung, J.H., Cheol Oh, H., Soo Noh, H., Ji, J.H., Soo Kim, S. (2006). Metal nanoparticle generation using a small ceramic heater with a local heating area. Journal of Aerosol Science, 37, 1662-1670. DOI: https://doi.org/10.1016/j.jaerosci.2006.09.002
  42. Mafune, F., Kohno, J., Takeda, Y., Kondow, T., Sawabe, H. (2000). Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B, 104, 8333-8337. DOI: https://doi.org/10.1021/jp001803b
  43. Kabashin, A.V., Meunier, M. (2003). Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. Journal of Applied Physics, 94, 7941-7943. DOI: https://doi.org/10.1063/1.1626793
  44. Dolgaev, S.I., Simakin, A.V., Voronov, V.V., Shafeev, G.A., Bozon-Verduraz, F. (2002). Nanoparticles produced by laser ablation of solids in a liquid environment. Applied Surface Science, 186, 546-551. DOI: https://doi.org/10.1016/S0169-4332(01)00634-1
  45. Kim, S., Yoo, B., Chun, K., Kang, W., Choo, J., Gong, M., et al. (2005). Catalytic effect of laser-ablated Ni nanoparticles in the oxidative addition reaction for a coupling reagent of benzyl chloride and bromoacetonitrile. J Mol Catal A: Chem, 226, 231-234. DOI: https://doi.org/10.1016/j.molcata.2004.10.038
  46. Tarasenko, N., Butsen, A., Nevar, E., Savastenko, N. (2006). Synthesis of nanosized particles during laser ablation of gold in water. Appl Surf Sci, 252, 4439-4444. DOI: https://doi.org/10.1016/j.apsusc.2005.07.150
  47. Tsuji, T., Iryo, K., Watanabe, N., Tsuji, M. (2002). Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Applied Surface Science, 202, 80-85. DOI: https://doi.org/10.1016/S0169-4332(02)00936-4
  48. Tsuji, T., Kakita, T., Tsuji, M. (2003). Preparation of a nano-size particle of silver with femtosecond laser ablation in water. Applied Surface Science, 206, 314-320. DOI: https://doi.org/10.1016/S0169-4332(02)01230-8
  49. Siegel, J., KvítekOndřej., Ulbrich, Pavel., Kolská, Z., Slepička, P., Švorčík, V. (2012). Progressive approach for metal nanoparticle synthesis. Materials Letters, 89, 47-50. DOI: https://doi.org/10.1016/j.matlet.2012.08.048
  50. Sun, Y., Xia, Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176-2179.
  51. I'm, S.H., Lee, Y.T., Wiley, B., Xia, Y. (2005). Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angewandte Chemie International Edition, 44, 2154-2157. DOI: https://doi.org/10.1002/anie.200462208
  52. Tao, A., Sinsermsuksakul, P., Yang, P. (2006). Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition, 45, 4597-4601. DOI: https://doi.org/10.1002/anie.200601277
  53. Sun, Y., Xia, Y. (2002), Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 298, 2176-2179. DOI: https://doi.org/10.1126/science.1077229
  54. Zhang, J., Langille, M.R., Mirkin, C.A. (2011). Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds). Nano Lett., 11, 2495-2498. DOI: https://doi.org/10.1021/nl2009789
  55. Ojha, A.K., Forster, S., Kumar, S., Vats, S., Negi, S. (2013). Fischer I. Synthesis of well-dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram-positive and negative bacterial strains. Journal of Nanobiotechnology, 44, 1-7. DOI: https://doi.org/10.1186/1477-3155-11-42
  56. Gebeyehu, M.B., Chala, T.F., Chang, S-Y., Wu, C-M., Lee, J-Y. (2002). Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method. RSC Advances, 14, 4736-4745.
  57. Li, B., Ye, S., Stewart, I.E., Alvarez, S., Wiley, B.J. (2015). Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett., 15, 6722-6726. DOI: https://doi.org/10.1021/acs.nanolett.5b02582
  58. Gebeyehu, M.B., Chala, T.F., Chang, S-Y., Wu, C-M., Lee, J-Y. (2017). Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method. RSC Advances, 7, 16139-16148. DOI: https://doi.org/10.1039/C7RA00238F
  59. Zhang, J., Li, S., Wu, J., Schatz, G.C., Mirkin, C.A. (2009). Plasmon-mediated synthesis of silver triangular bipyramids. Angewandte Chemie, 121, 7927-7931. DOI: https://doi.org/10.1002/ange.200903380
  60. Bin, Xue, B., Wang, D, Kong, X., Zhang, Y., Liu, X., Tu, L., Chang, Y., Li, C., Wu, F., Zeng, Q., Zhao, H., Zhaoc, H., and Zhang, H. (2015). Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity. Nanoscale, 7, 8048-8057. https://doi.org/10.103 9/C4NR06901C DOI: https://doi.org/10.1039/C4NR06901C
  61. Wani, I.A., Khatoon, S., Ganguly, A., Ahmed, J., Ahmad, T. (2013). Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Colloids and Surfaces B: Boiinterfaces, 101, 243-250. https://doi.org/10.1016/j.colsurfb.2012.07.001 DOI: https://doi.org/10.1016/j.colsurfb.2012.07.001
  62. Nair, B., Pradeep, T. (2002). Coalescence of nanoclusters and the formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth and Design, 2, 293-298. https://doi.org/10.1021/cg0255164 DOI: https://doi.org/10.1021/cg0255164
  63. Mukherjee, P., Ahmad, A., Mandal, D. et al. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Letters, 2, 515-519. https://doi.org/10.1021/nl0155274
  64. Chandran, S. P., Chaudhary, M., Pasricha, R, Ahmad, A, and Sastry, M. (2002). Synthesis of gold nano triangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22, 577-583. https://doi.org/10.1021/bp0501423 DOI: https://doi.org/10.1021/bp0501423
  65. Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A.R., & Pal, Singh, R. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity, Journal of Nanoparticle Research, 13, 2981-2988. https://doi.org/10.1007/s11051-010-0193-y DOI: https://doi.org/10.1007/s11051-010-0193-y
  66. Gilaki, M. (2010). Biosynthesis of silver nanoparticles using plant extracts. Journal of Biological Sciences, 10, 465-467. https://doi.org/10.3923/jbs.2010.465.467 DOI: https://doi.org/10.3923/jbs.2010.465.467
  67. Lal, S.S., Nayak, P.L. (2012). Green synthesis of gold nanoparticles using various extract of plants and spices. International Journal of Science Innovations and Discoveries, 2(3), 325-350
  68. Singh, A. K., Srivastava, O.N. (2015). One-step green synthesis of gold nanoparticles using black cardamom and effect of pH on its synthesis, Nanoscale Research Letters, 353, 11671-11674. https://doi.org/10.1515/n ano.11671_2015.53
  69. Bansod, S., Bawaskar, M., Gade, A. and Rai, M., 2015. Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. IET Nanobiotechnology, 9(4), 165-171. DOI: https://doi.org/10.1049/iet-nbt.2014.0042
  70. Huang, J., Zhan, G., Zheng, B., Sun, D., Lu, F., Lin, Y., Chen, H., Zheng, Z., Zheng, Y. and Li, Q., 2011. Biogenic Silver Nanoparticles by Cacumen Platycladi Extract: Synthesis, Formation Mechanism, and Antibacterial Activity. Industrial & Engineering Chemistry Research, 50(15), 9095-9106. DOI: https://doi.org/10.1021/ie200858y
  71. Prema, P. (2010). Chemical mediated synthesis of silver nanoparticles and its potential antibacterial application. Progress in Molecular and Environmental Bioengineering, 6, 151-166. https://doi.org/10.5772/22114 DOI: https://doi.org/10.5772/22114
  72. Shankar, S.S., Rai, A., Ahmad, A., and Sastry, M. (20005). Controlling the optical properties of lemongrass extract synthesized gold nano triangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials, 17, 566-572. https://doi.org/10.1021/cm048292g DOI: https://doi.org/10.1021/cm048292g
  73. Savithramma, N., Linga Rao, M., and Suvarnalatha, Devi P. (2011). Evaluation of antibacterial efficacy of biologically synthesized silver Nanoparticles using stem barks of Boswellia ovalifoliolata Bal. and Henry and Shoreatumbuggaia Roxb. Journal of Biological Sciences, 11, 39-45. https://doi.org/10.3923/jbs.2011.39.45 DOI: https://doi.org/10.3923/jbs.2011.39.45
  74. Slawson, R.M., Trevors, J.T., and Lee H. (1992). Silver accumulation and resistance in Pseudomonas stutzeri. Archives of Microbiology, 158, 398-404. https://doi.org/10.1007/BF00276299 DOI: https://doi.org/10.1007/BF00276299
  75. Pooley, F.D. (1982). Bacteria accumulate silver during leaching of sulfide ore minerals. Nature, 986, 642-643. https://doi.org/10.1038/296642a0 DOI: https://doi.org/10.1038/296642a0
  76. Klaus, T., Joerger, R., Olsson, E. and Granqvist, C., 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611-13614. DOI: https://doi.org/10.1073/pnas.96.24.13611
  77. Samadi, N., Golkaran, D., Eslamifar, A., Jamalifarh, M. R., Fazeli, M.R, and Mohseni, F.A. (209). Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic. J Biomed Nanotechnol, 5, 247-253. https://doi.org/10.1166/jbn.2009.1029 DOI: https://doi.org/10.1166/jbn.2009.1029
  78. Kharissova, O.V., Dias, H.V.R., Kharisov, B.I., Pérez, B.O., and Pérez, V.M.J. (2013). The greener synthesis of nanoparticles. Trends in Biotechnology, 31, 240-248. https://doi.org/10.1016/j.tibtech.2013.01.003 DOI: https://doi.org/10.1016/j.tibtech.2013.01.003
  79. Muhammad Rafique M., Iqra Sadaf I.; M. S. Rafique M. S. (2017). Green synthesis of silver nanoparticles and their application. Artificial Cells, Nanomedicine, and Biotechnology, 7, 1-20. DOI: https://doi.org/10.1080/21691401.2016.1241792
  80. Murali, S., Absar, A., Khan, I.M., and Rajiv, K. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycetes. Current Science, 85(25), 162-170.
  81. Mandal, D., Bolander, M.E., Mukhopadhyay, D., Sarkar, G., and Mukherjee, P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Boitechnology, 69, 485-492. https://doi.org/10.1007/s00253-005-0179-3 DOI: https://doi.org/10.1007/s00253-005-0179-3
  82. Mukherjee, P., Ahmad, A., Mandal, D. et al. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Letters, 1, 515-519. https://doi.org/10.1021/nl0155274 DOI: https://doi.org/10.1021/nl0155274
  83. Ahmad, A., Mukherjee, P., Senapati, S. et al. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28, 313-318. https://doi.org/10.1016/S0927-7765(02)00174-1 DOI: https://doi.org/10.1016/S0927-7765(02)00174-1
  84. Balaji, D.S., Basavaraja, S., Deshpande, R., Mahesh, D.B., Prabhakar, B.K., and Venkataraman A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces B: Biointerfaces, 68, 88-92. https://doi.org/10.1016/j.colsurfb.2008.09.022 DOI: https://doi.org/10.1016/j.colsurfb.2008.09.022
  85. Durán, N., Marcato, P. D., Alves, O. L., de Souza, G. I. H., and Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3, 1-8. https://doi.org/10.1186/1477-3155-3-8 DOI: https://doi.org/10.1186/1477-3155-3-8
  86. Vigneshwaran, N., Kathe, A. A., Varadarajan, P. V., Nachane, R. P., and Balasubramanya, R. H. (2006). Biomimetics of silver nanoparticles by white-rot fungus, Phaenerochaete chrysosporium. Colloids and Surfaces B: Biointerfaces, 53(1), 55-59. https://doi.org/10.1016/j.colsurfb.2006.07.014 DOI: https://doi.org/10.1016/j.colsurfb.2006.07.014
  87. Bhainsa, K. C., and D'Souza, S.F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids and Surfaces B: Biointerfaces, 47(2), 160-164. https://doi.org/10.1016/j. colsurfb.2005.11.026 DOI: https://doi.org/10.1016/j.colsurfb.2005.11.026
  88. Naqvi, S. H. Z., Kiran, U., Ali, M. I. et al. (2013). Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. International Journal of Nanomedicine, 8(1), 3187-3195. https://doi.org/10.2147/IJN.S49284 DOI: https://doi.org/10.2147/IJN.S49284
  89. Mourato, A., Gadanho, M., Lino A. R., and Tenreiro R. (2011). Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorganic Chemistry and Applications, 11, 1-8. https://doi.org/10.11 55/2011/546074 DOI: https://doi.org/10.1155/2011/546074
  90. Kowshik, M., Ashtaputre, S., Kharrazi, S. et al. (2003). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 14(1), 95-100. https://doi.org/10.1088/0957-4484/14/1/321 DOI: https://doi.org/10.1088/0957-4484/14/1/321
  91. Saravanan, M., Amelash, T., Negash, L. et al. (2014). Extracellular biosynthesis and biomedical application of silver nanoparticles synthesized from baker's yeast. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4(3), 822-828.
  92. Guilger Casagrande, M. and Lima, R.D. (2019). Synthesis of Silver Nanoparticles Mediated by Fungi. Front. Bioeng. Biotechnol., 7, 287. https://doi.org/10.3389/fbioe.2019.00287 DOI: https://doi.org/10.3389/fbioe.2019.00287
  93. Huy, Q.T., Huyen, M.T.P., Le, T.A., Tonezzer, M. (2020). Recent Advances of Silver Nanoparticle in Cancer Diagnosis and Treatment. Anticancer Agents Med Chem, 20(11), 1276-1287. https://doi.org10.2174/187152061 9666190710121727 DOI: https://doi.org/10.2174/1871520619666190710121727
  94. Singaravelu, G., Arockiamary, J. S., Kumar, V. G. and Govindaraju, K. (2007). A novel extracellular synthesis of monodispersity gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces, 57(1), 97-101. https://doi.org/10.1016/j.colsurfb.2007.01.010 DOI: https://doi.org/10.1016/j.colsurfb.2007.01.010
  95. But, S., Sahiner, N. (2011). A versatile hydrogel template for metal nanoparticle preparation and their use in catalysis. Polymer, 52(21), 4834-4840. https://doi.org/10.1016/j.polymer.2011.08.021 DOI: https://doi.org/10.1016/j.polymer.2011.08.021
  96. Harish, S., Sabarinathan, R., Joseph, J., Phani, K.L.(2011). Role of pH in the synthesis of 3-aminopropyl trimethoxysilane stabilized colloidal gold/silver and their alloy sols and their application to catalysis. Materials Chemistry and Physics, 127(1-2), 203-207. https://doi.org/10.1016/j.matchemphys.2011.01.060 DOI: https://doi.org/10.1016/j.matchemphys.2011.01.060
  97. Botta, R., Upender, G., Sathyavathi, R., Rao, D.N., Bansal, C.(2013). Silver nanoclusters films for single-molecule detection using surface-enhanced Raman scattering (SERS). Materials Chemistry and Physics, 137(3), 699-703. https://doi.org/10.1016/j.matchemphys.2012.10.022 DOI: https://doi.org/10.1016/j.matchemphys.2012.10.022
  98. Zhang, T., Song, Y.J., Zhang, X.Y., Wu, J.Y. (2014). Synthesis of silver nanostructures by multistep methods. Sensors. Sensors, 14(4), 5860-5889. https://doi.org/10.3390/s140405860 DOI: https://doi.org/10.3390/s140405860
  99. Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., Mubarakali, D., Rajesh, M., Arun, R.; et al. (2013). Biogenic silver nanoparticle for cancer treatment. Colloids and Surfaces B: Biointerfaces, 106, 86-92. https://doi.org/10 .1016/j.colsurfb.2013.01.027 DOI: https://doi.org/10.1016/j.colsurfb.2013.01.027
  100. Satyavani, K., Gurudeeban, S., Ramanathan, T., Balasubramanian, T. (2011). Biomedical potential of silver nanoparticle synthesized from calli cells of citrulluscolocynthis (L.) Schrad. Journal of Nanobiotechnology, 9(43), 1477- 3155. https://doi.org/10.1186/1477-3155-9-43 DOI: https://doi.org/10.1186/1477-3155-9-43
  101. Gurunathan, S. et al. (2009). Antiangiogenic properties of silver nanoparticles. Biomaterials, 30(31), 6341-6350. https://doi.org/10.1016/j.biomaterials.2009.08.008 DOI: https://doi.org/10.1016/j.biomaterials.2009.08.008
  102. Raja, G., Jang, Y.K., Suh, J.S., Kim, H.S., Ahn, H.S., Kim, T.J. (2020). Microcellular Environmental Regulation of Silver Nanoparticle in Cancer Therapy. Cancers (Basel), 12(3), 390- 664. https://doi.org/10.3390/cancers12030664 DOI: https://doi.org/10.3390/cancers12030664
  103. Sriram, M.I. et al. (2010). Antitumor activity of silver nanoparticle in Dalton's lymphoma ascites tumor model. Int J Nanomed, 5, 753-762. DOI: https://doi.org/10.2147/IJN.S11727
  104. Guo, D., Zhu, L., Huang, Z., Zhou, H., Ge, Y., Ma, W., Wu, J., Zhang, X., Zhou, X., Zhang, Y., Zhao, Y., Gu, N. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials, 34(32), 7884-94. https://doi.org/10.1016/j.biomaterials.2013.07.015 DOI: https://doi.org/10.1016/j.biomaterials.2013.07.015
  105. Guo, D. et. al. (2014). The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J Biomed Nanotechnol, 10(4), 669-678. https://doi.org/10.1166/jbn.2014.1625 DOI: https://doi.org/10.1166/jbn.2014.1625
  106. Franco-Molina, M.A. et al. (2010). Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res, 29, 148-154. https://doi.org/10.1186/1756-9966-29-154 DOI: https://doi.org/10.1186/1756-9966-29-148
  107. Gurunathan, S. et al. (2013). Cytotoxicity of biologically synthesized silver nanoparticles in MDA- MB-231 human breast cancer cells. Biomed Res Int, 31, 535796-535805. DOI: https://doi.org/10.1155/2013/535796
  108. Gurunathan, S. et al. (2013). Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int. J. Nanomed, 8, 4399-4413. DOI: https://doi.org/10.2147/IJN.S51881
  109. Foldbjerg, R. et al. (2011). Cytotoxicity and genotoxicity of silver nanoparticles in theHuman lung cancer cell line, A549. Arch Toxicol, 85, 743-750. https://doi.org/10.1007/s00204-010-0545-5 DOI: https://doi.org/10.1007/s00204-010-0545-5
  110. Nazir, S. et al. (2011). Novel and cost-effective green synthesis of silver nanoparticles and they're in vivo antitumor properties against human cancer cell lines. J Biosci Tech, 2, 425-430.
  111. Foulkes, R., Ali Asgari, M., Curtis, A., Hoskins, C. (2019). Silver Nanoparticle – Mediated Therapies in The Treatment of Pancreatic Cancer. ACS Appl. Nano Mater 2, 4, 1758-1772. DOI: https://doi.org/10.1021/acsanm.9b00439
  112. Mannering, T., Tokura, S., Rujiravanit, R. (2008). Impregnation of silver nanoparticles into bacterial cellulose and for antimicrobial wound dressing. Carbohydrate Polymers, 72(1), 43-51. https://doi.org/10.1016/j.ca rbpol.2007.07.025 DOI: https://doi.org/10.1016/j.carbpol.2007.07.025
  113. Singh, R., Singh, D. (2014). Chitin membranes containing silver nanoparticle for wound dressing application. Corporate Ownership and Control, 11(2), 264-268. https://doi.org/10.22495/cocv11i2c2p2 DOI: https://doi.org/10.1111/j.1742-481X.2012.01084.x