Main Article Content


Purpose: Generally, conventional or volatile organic solvents are extracted from petroleum resources and other such resources harmful to living species' environment and wellbeing. Because of this severe threat, researchers developed some eco-friendly alternations to circumvent the difficulties associated with traditional solvents. This review paper provides an overview of different alternatives or substitutes to overcome the toxicity of conventional solvents.

Methodology: The properties of a green solvent, tools, and techniques used to measure the greenness of solvent, its parameters, classification, and applications in various fields are the factors reviewed in this study.

Principal Findings: Chemical and pharmaceutical industries use around 80% of chemical-based solvents out of the total volume for various chemical procedures. The evolution of green chemistry has led to the development of green solvents.

Implications: The use of non-conventional solvents also offers prospects for facilitating the recycling and recovery of the solvents.

Novelty: The novelty of this work includes its eco-friendliness and sustainability over traditional organic solvents. Along with these, green solvents can be recycled for further use. On a green note, we have discussed various types of solvents, parameters, their properties and applications in different fields in this chapter. And all of them possess some unique characteristics and advantages over conventional organic solvents. Some of them are completely eco-friendly and others in a way require some research and enhancement in techniques to behave like one.


Green Solvent Classification Properties Application

Article Details

How to Cite
Banger, A., Srivastava, A., Yadav, A., Sharma, R., & Srivastava, M. (2023). Application of Green Solvent in Green Chemistry: An overview. Green Chemistry & Technology Letters, 9(1), 01-14.


  1. Abbott, T.P., Kleiman, R. (1991). Solvent selection guide for counter-current chromatography. J Chromatogr A., 538, 109-118. DOI:
  2. Abou-Shehada, S., Clark, J.H., Paggiola, G., Sherwood, J. (2016). Tunable solvents: shades of green. Chem Eng Process., 99, 88-96.
  3. Abou-Shehada, S., Clark, J.H., Paggiola, G., Sherwood, J. (2016). Tunable solvents: shades of green. Chem Eng Process., 99, 88-96. DOI:
  4. An, J., Rahn, K.L., Anderson, J.L. (2017). Headspace single-drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents. Talanta., 167, 268-278.
  5., PMid:28340720 DOI:
  6. Anugwom, I., Maki-Arvela, P., Virtanen, P., Willfor, S., Sjöholm, R., Mikkola, J.P. (2012). Selective extraction of hemicelluloses from spruce using switchable ionic liquids. Carbo. Poly., 87(3), 2005−2011.
  7. DOI:
  8. Atilio de Frias, J. A., Feng, H. (2014). Pretreatment of furfural residues with switchable butadiene sulfone in the sugarcane bagasse biorefinery. Green Chem., 16(5), 2779−2787. DOI:
  9. Aymonier, C., Loppinet-Serani, A., Reveron, H., Garrabos, Y., Cansell, F. (2006). Review of supercritical fluids in inorganic materials science. J Super Fluid., 38, 242-251. DOI:
  10. Bai, Y., Essehli, R., Jafta, C.J., Livingston, K.M., Belharouak, I. (2021). Recovery of Cathode Materials and Aluminum Foil Using a Green Solvent. ACS Sustainable Chemistry & Engineering, 9(17), 6048–6055. https://doi:10.1021/acssuschemeng.1c01293 DOI:
  11. Bajkacz, S., Adamek, J. (2017). Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta., 168, 329-335., PMid:28391863 DOI:
  12. Ballesteros-Go'mez, A., Rubio, S., Pe'rez-Bendito, D. (2009). Potential of supramolecular solvents for the extraction of contaminants in liquid foods. J. Chromatogr. A., 1216(3), 530-539. 16/j.chroma.2008.06.029, PMid:18603255 DOI:
  13. Ballesteros-Gomez, A., Sicilia, M.D., Rubio, S. (2010). Supramolecular solvents in the extraction of organic compounds. A review. Anal. Chem. Acta., 677(2), 108-130., PMid:20837178 DOI:
  14. Barthel-Rosa, L.P., Gladysz, J.A. (1999). Chemistry in fluorous media: a user's guide to practical considerations in the application of fluorous catalysts and reagents. Coord Chem Rev., 192, 587-605. 0010-8545(99)00102-2 DOI:
  15. Bera, A., Belhaj, H. (2016). Ionic liquids as alternatives of surfactants in enhanced oil recovery-a state-of-the-art review. J. Mol. Liq., 224, 177-188. DOI:
  16. Boyd, A.R., Champagne, P., McGinn, P.J., MacDougall, K.M., Melanson, J.E., Jessop, P.G. (2012). Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production. Bio. Technol., 118, 628−632,, PMid:22721685 DOI:
  17. Breeden, S.W., Clark, J.H., Macquarrie, D.J., Sherwood, J. (2012). Green techniques for organic synthesis and medicinal chemistry. Green Solvents. Wiley, Chichester. 241-261. DOI:
  18. Cai, C.M., Zhang, T., Kumar, R., Wyman, C.E. (2014). Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J. Chem. Technol. Biotech., 89(1), 2−10.
  19. DOI:
  20. Capello, C., Fischer, U., Hungerbühler, K. (2007). What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 9(9), 927.
  21. Capello, C., Fischer, U., Hungerbühler, K. (2007). What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 9, 927-934. DOI:
  22. Cavazzini, M., Montanari, F., Pozzi, G., Quici, S. (1999). Perfluorocarbon-soluble catalysts and reagents and the application of FBS (fluorous biphase system) to organic synthesis. J Fluorine Chem., 94, 183-193. https://doi.or g/10.1016/S0022-1139(98)00358-3 DOI:
  23. Ciriminna, R., Katryniok, B., Paul, S.B., Dumeignil, F., Pagliaro, M. (2015). Glycerol-Derived Renewable Polyglycerols: A Class of Versatile Chemicals of Wide Potential Application. Org. Process Res. Dev., 19(7), 748−754. DOI:
  24. Clark, J.H., Farmer, T.J., Hunt, A.J., Sherwood, J. (2015). Opportunities for biobased solvents created as petrochemical and fuel products transition towards renewable resources. Int J Mol Sci., 16, 17101-17159., PMid:26225963 PMCid:PMC4581186 DOI:
  25. Clarke, C.J., Tu, W.-C., Levers, O., Bröhl, A., Hallett, J.P. (2018). Homogenous catalysis in supercritical fluids. Chem Rev., 118, 747-800., PMid:29300087 DOI:
  26. Constable, D.J.C., Jimenez-Gonzalez, C., Henderson, R.K. (2007). Perspective on solvent use in the pharmaceutical industry. Org Process Res Dev., 11, 133-137. DOI:
  27. Cornils, B. (1997). Fluorous biphase systems-the new phase-separation and immobilization technique. Angew Chem Int Ed., 36, 2057-2059. DOI:
  28. Cunha, S.C., Fernandes, J.O. (2018). Extraction techniques with deep eutectic solvents. Trac Trends Anal Chem.,105, 225-239. DOI:
  29. Curran, D. (2001). Fluorous techniques for the synthesis and separation of organic molecules. Green Chem., 3(1), G3-G7. DOI:
  30. Curran, D.P. (1998). Strategy-level separations in organic synthesis: from planning to practice. Angew Chem Int Ed., 37, 1174-1196.<1174::AID-ANIE1174>3.0.CO;2-P DOI:<1174::AID-ANIE1174>3.0.CO;2-P
  31. Curzons, A.D., Constable, D.C., Cunningham, V.L. (1999). Solvent selection guide: a guide to the integration of environmental, health and safety criteria into the selection of solvents. Clean Prod Process., 1, 82-90. DOI:
  32. Diorazio, L.J., Hose, D.R.J., Adlington, N.K. (2016). Toward a more holistic framework for solvent selection. Org Process Res Dev., 20, 760-773. DOI:
  33. Dunford, N.T., Temelli, F., LeBlanc, E. (1997). Supercritical CO2 extraction of oil and residual proteins from Atlantic mackerel (Scomber scombrus) as affected by moisture content. J. Food Sci., 62(2), 289−294. DOI:
  34. Earle, M.J., Seddon, K.R. (2000). Ionic liquids green solvents for the future. Pure App Chem., 72, 1391-1398. DOI:
  35. Eastman, H.E., Jamieson, C., Watson, A.J.B. (2015). Development of solvent selection guides. Aldrichimica Acta., 48, 51-55.
  36. Espino, M., de los Ángeles Fernández M., Gomez, F.J.V., Silva, M.F. (2016). Natural designer solvents for greening analytical chemistry. TrAC - Trends Anal. Chem., 76, 126-136. c.2015.11.006 DOI:
  37. Fang, V, Yeung, H.W., Leung, H.W., Huie, C.W. (2000). Micelle-mediated extraction and preconcentration of ginsenosides from Chinese herbal medicine, J. Chromatogr. A., 904(1), 47-55. DOI:
  38. Ferrera, Z.S., Sanz, C.P., Santana, C.M., Rodrıguez, J.J.S. (2004). The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples. Trends Anal. Chem., 23(7), 469-479. DOI:
  39. Filly, A., Fabiano-Tixier, A.S., Fernandez, X., Chemat, F. (2015). Alternative solvents for extraction of food aromas. Experimental and COSMO-RS study. LWT - Food Sci. Technol., 61, 33-40. .lwt.2014.11.021 DOI:
  40. Fine, F., Vian, M.A., Tixier, A.-S.F., Carre, P., Pages, X., Chemat, F. (2013). Les agro-solvants pour l'extraction des huiles végétales issues de graines oléagineuses. OCL. 20, A502. DOI:
  41. Fischer, V., Touraud, D., Kunz, W. (2016). Eco-friendly one pot synthesis of caffeic acid phenethyl ester (CAPE) via an in-situ formed deep eutectic solvent. Sustain. Chem. Pharm., 4, 40-45. .scp.2016.08.002
  42. Fischer, V., Touraud, D., Kunz, W. (2016). Eco-friendly one-pot synthesis of caffeic acid phenethyl ester (CAPE) via an in-situ formed deep eutectic solvent. Sustain. Chem. Pharm., 4, 40-45.
  43. DOI:
  44. Fu, D., Farag, S., Chaouki, J., Jessop, P.G. (2014). Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent. Bioresour. Technol., 154, 101−108. h.2013.11.091, PMid:24384316 DOI:
  45. Garcı'a-Fonseca, S., Ballesteros-Go'mez, A., Rubio, S. (2016). Restricted access to supramolecular solvents for sample treatment in the enzyme-linked immunosorbent assay of mycotoxins in food, Anal. Chem. Acta., 935, 129-135., PMid:27543022 DOI:
  46. Gladysz, J.A., Curran, D.P., Horvath, I.T. (2004). Handbook of fluorous chemistry. Wiley-VCH, Weinheim. DOI:
  47. Gomez, F.J.V., Espino, M., Fernández, M.A., Silva, M.F. (2018). A Greener Approach to Prepare Natural Deep Eutectic Solvents. Chem Select., 3, 6122-6125. DOI:
  48. Goodship, V., Ogur, E.O. (2004). Polymer processing with supercritical fluids. Rapra review reports. Rapra Technology Ltd, Shawbury.
  49. Gu, Y., Jerome, F. (2013). Bio-based solvents: an emerging generation of fluidsfor the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev. 42, 9550-9570. cs60241a, PMid:24056753 DOI:
  50. Gupta, A., Verma, J.P. (2015). Sustainable bio-ethanol production from agro-residues: a review. Renew. Sustain. Energy Rev., 41, 550-567. DOI:
  51. Häckl, K., Kunz, W. (2018). Some aspects of green solvents. Comptes Rendus Chimie., 21(6), 572-580.
  52. DOI:
  53. Herrero, M., Cifuentes, A., Ibanez, E. (2006). Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem., 98(1), 136−148. DOI:
  54. Herrero, M., Mendiola, J.A., Cifuentes, A., Ibanez, E. (2010). Supercritical fluid extraction: recent advances and applications. J Chroma A., 1217, 2495-2511., PMid:20022016 DOI:
  55. Hobbs, H.R., Thomas, N.R. (2007). Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev., 107, 2786-2820., PMid:17564485 DOI:
  56. Horvath, I.T., R ' abai, J. (1994). Facile catalyst separation without water: ' fluorous biphase hydroformylation of olefins. Science., 266, 72-75., PMid:17814001 DOI:
  57. Hyde, J.R., Licence, P., Carter, D., Poliakoff, M. (2001). Continuous catalytic reactions in supercritical fluids. App Cat A Gen., 222, 119-131. DOI:
  58. Jessop, P.G. (2011). Searching for green solvents. Green Chem., 13, 1391-1398. c00797h
  59. Jessop, P.G. (2011). Searching for green solvents. Green Chem., 13(6), 1391−1398. c00797h DOI:
  60. Jessop, P.G. (2015). Switchable solvents as media for synthesis and separations. Aldrichimica Acta., 48, 18−21.
  61. Jessop, P.G., Leitner, W. (1999). Chemical synthesis using supercritical fluids. Wiley, Weinheim.
  62., PMCid:PMC1756857
  63. Jessop, P.G., Leitner, W. (1999). Chemical synthesis using supercritical fluids. Wiley-VCH, Weinheim.
  64., PMCid:PMC1756857 DOI:
  65. Jessop, P.G., Phan, L., Carrier, A., Robinson, S., Dürr, C.J., Harjani, J.R. (2010). A solvent having switchable hydrophilicity. Green Chem., 12, 809. DOI:
  66. Khezeli, T., Daneshfar, A. (2017). Synthesis and application of magnetic deep eutectic solvents: novel solvents for ultrasound-assisted liquid-liquid microextraction of thiophene. Ultrason. Sonochem., 38, 590-597., PMid:27562909 DOI:
  67. Kim Alfonsi, K., Colberg, J., Dunn, P.J., Fevig, T., Jennings, S., Johnson, T.A., Kleine, H.P., Knight, C., Nagy, M.A., Perry, D.A., Stefaniak, M. (2008). Green chemistry tools to influence a medicinal chemistry and research chemistry-based organisation. Green Chem., 10, 31-36. DOI:
  68. Kitazume, T. (2000). Green chemistry development in fluorine science. J Fluorine Chem., 105, 265-278.
  69. DOI:
  70. Knothe, G., Steidley, K.R. (2011). Fatty acid alkyl esters as solvents: evaluation of the kauri-butanol value. Comparison to hydrocarbons, dimethyl diesters, and other oxygenates. Ind. Eng. Chem. Res., 50(7), 4177−4182. DOI:
  71. Kokosa, J.M. (2019). Selecting an extraction solvent for a greener liquid-phase microextraction (LPME) mode based analytical method. Trends Anal. Chem. 118, 238-247. DOI:
  72. Kudłak, B., Owczarek, K., Namiesnik, J. (2015). Selected issues related to the toxicity of ionic liquids and deep eutectic solvents- a review. Environ Sci Poll Res., 22, 11975-11992., PMid:26040266 DOI:
  73. Li, S., Yan, W., Zhang, W. (2009). Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem., 11, 1618-1626. DOI:
  74. Liu, Y., Friesen, J.B., McAlpine, J.B., Lankin, D.C., Chen, S.-N., Pauli, G.F. (2018). Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod., 81, 679-690. natprod.7b00945, PMid:29513526 PMCid:PMC5913660 DOI:
  75. Lo'pez-Jime'nez, F.J., Rubio, S., Pe'rez-Bendito, D. (2010). Supramolecular solvent-based microextraction of Sudan dyes in chilli-containing foodstuffs before their liquid chromatography-photodiode array determination. Food Chem., 121(3), 763-769. DOI:
  76. MacMillan, D.S., Murray, J., Sneddon, H.F., Jamieson, C., Watson, A.J.B. (2013). Evaluation of alternative solvents in common amide coupling reactions: replacement of dichloromethane and N, N-dimethylformamide. Green Chem., 15, 596-600. DOI:
  77. MacMillan, D.S., Murray, J., Sneddon, H.F., Jamieson, C., Watson, A.J.B. (2012). Replacement of dichloromethane within chromatographic purification: a guide to alternative solvents. Green Chem., 14, 3016-3019. DOI:
  78. Mantell, C., Casas, L., Rodríguez, M., de la Ossa, E.M. (2013). Supercritical fluid extraction. Separat and Puri Tech in Bioref., 79−100. DOI:
  79. Marriott, R., Sin, E. (2012). Supercritical CO2 as an Environmentally Benign Medium for Biorefinery. Role of Green Chem in Bio Proc and Con., 181−204. DOI:
  80. Martínez, J.L. (2008). Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Taylor & Francis Group, Boca Raton. DOI:
  81. Martins, M.A.R., Pinho, S.P., Coutinho, J.A.P. (2019). Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solution Chem., 48, 962-982. DOI:
  82. McGonagle, F.I., MacMillan, D.S., Murray, J., Sneddon, H.F., Jamieson, C., Watson, A.J.B. (2013). Development of a solvent selection guide for aldehyde-based direct reductive amination processes. Green Chem., 15, 1159-1165. DOI:
  83. Melnyk, A., Namiesnik, J., Wolska, L. (2015). Theory and recent applications of coacervate-based extraction techniques. Trac Trends Anal Chem., 71, 282-292. DOI:
  84. Mendes, R. L., Fernandes, H.L., Coelho, J., Reis, E.C., Cabral, J., Novais, J.M., Palavra, A.F. (1995). Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem., 53(1), 99−103. DOI:
  85. Mendes, R.L., Fernandes, H.L., Coelho, J.A., Cabral, J.M., Palavra, A.M., Novais, J.M. (1994). Supercritical carbon dioxide extraction of hydrocarbons from the microalga Botryococcus braunii. J. Appl. Phycol., 6(3), 289−293. DOI:
  86. Mishima, K. (2008). Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Adv Drug Deli Rev., 60, 411-432., PMid:18061302 DOI:
  87. Moral, A., Sicilia, M.D., Rubio, S. (2009). Determination of benzimidazolic fungicides in fruits and vegetables by supramolecular solvent-based microextraction/liquid chromatography/fluorescence detection. Anal. Chem. Acta., 650(2), 207-213., PMid:19720194 DOI:
  88. Murray, P.M., Bellany, F., Benhamou, L., Bučar, D.K., Tabor, A.B., Sheppard, T.D. (2016). The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. Org Biomol Chem., 14, 2373-2384., PMid:26699438 DOI:
  89. Owczarek, K., Szczepanska, N., Plotka-Wasylka, J., Rutkowska, M., Shyshchak, O., Bratychak, M., Namiesnik, J. (2016). Natural deep eutectic solvents in extraction process. Chem. Chem. Technol., 10(4), 601-606. DOI:
  90. Payne, S.M., Kerton, F.M. (2010). Solubility of bio-sourced feedstocks in 'green solvents. Green Chem., 12(9), 1648−1653. DOI:
  91. Pena-Pereira, F., Kloskowski, A., Namieśnik, J. (2015). Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a novel generation of eco-friendly alternatives. Green Chem., 17, 3687-3705. DOI:
  92. PLotka-Wasylka, J., Rutkowska, M., Owczarek, K., Tobiszewski, M., Namiesnik, J. (2017). Extraction of environmentally friendly solvents. Trac Trends Anal Chem., 91, 12-25. 03.006 DOI:
  93. Pollet, P., Davey, E.A., Ureña-Benavides, E.E., Eckert, C.A., Liotta, C.L. (2014). Solvents for sustainable chemical processes. Green Chem., 16, 1034-1055. DOI:
  94. Prajapati, D., Gohain, M. (2004). Recent advances in the application of supercritical fluids for carbon-carbon bond formation in organic synthesis. Tetrahedron., 60, 815-833. DOI:
  95. Prat, D., Hayler, J., Wells, A. (2014). A survey of solvent selection guides. Green Chem., 16, 4546-4551.
  96. DOI:
  97. Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C.R., Abou-Shehada, S., Dunn, P.J. (2016). CHEM21 selection guide of classical- and less classical-solvents. Green Chem., 18, 288-296.
  98. DOI:
  99. Procopio, D., Siciliano, C., Trombino, S., Dumitrescu, D.E., Suciu, F., Gioia, M.L.D. (2022). Green solvents for the formation of amide linkages. Org. Biomol. Chem., 20, 1137-1149. DOI:
  100. Ramsey, E., Sun, Q., Zhang, Z., Zhang, C., Gou, W. (2009). Mini-review: green sustainable processes using supercritical fluid carbon dioxide. J Environ Sci., 21, 720-726. DOI:
  101. Reichardt, C. (1979). Solvent effects in organic chemistry. Verlag Chemie, Weinheim.
  102. Rezaei, F., Yamini, Y., Moradi, M., Daraei, B. (2013). Supramolecular solvent-based hollow fibre liquid-phase microextraction of benzodiazepines. Anal. Chem. Acta., 804, 135-142., PMid:24267074 DOI:
  103. Rothenberg, G., Downie, A.P., Raston, C.L., Scott, J.L. (2001). Understanding solid/solid organic reactions. J Am Chem Soc., 123, 8701-8708., PMid:11535074 DOI:
  104. Samorì, C., Cespi, D., Blair, P., Galletti, P., Malferrari, D., Passarini, F., et al. (2017). Application of switchable hydrophilicity solvents for recycling multilayer packaging materials. Green Chem., 19(7), 1714-1720. DOI:
  105. Sarrade, S., Guizard, C., Rios, G.M. (2003). New applications of supercritical fluids and supercritical fluids processes in separation. Sep Purif Technol., 32, 57-63. DOI:
  106. Señoráns, F.J., Ibañez, E. (2002). Analysis of fatty acids in foods by supercritical fluid chromatography. Anal Chim Acta., 465, 131-144. DOI:
  107. Sheldon, R.A. (2005). Green solvents for sustainable organic synthesis: state of the art. Green Chem. 7(5), 267-278. DOI:
  108. Sicaire, A., Abert Vian, M., Fine, F., Carre, P., Tostain, S., Chemat, F. (2015). Solvants alternatifs au n-hexane pour l'extraction d'huiles végéT ales (Poster).
  109. Skowerski, K., Białecki, J., Tracz, A., Olszewski, T.K. (2014). An attempt to provide an environmentally friendly solvent selection guide for olefin metathesis. Green Chem., 16, 1125-1130. GC41943F DOI:
  110. Smith, E.L., Abbott, A.P., Ryder, K.S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev., 114, 11060-11082., PMid:25300631 DOI:
  111. Soh, L., Curry, J., Beckman, E.J., Zimmerman, J.B. (2014). Effect of system conditions on biodiesel production via transesterification using carbon dioxide-methanol mixtures in the presence of a heterogeneous catalyst. ACS Sustainable Chem. Eng., 2(3), 387−395. DOI:
  112. Soh, L., Zimmerman, J. (2011). Biodiesel production: the potential of algal lipids extracted with supercritical carbon dioxide. Green Chem., 13(6), 1422−1429. DOI:
  113. Soylak, M., Khan, M., Yilmaz, E. (2016). Switchable solvent-based liquid-phase microextraction of uranium in environmental samples: a green approach. Anal. Methods., 8(5), 979-986. DOI:
  114. Sprague, M., Bendiksen, E.Å., Dick, J.R., Strachan, F., Pratoomyot, J., Berntssen, M.H., Tocher, D.R., Bell, J.G. (2010). Effects of decontaminated fish oil or a fish and vegetable oil blend on persistent organic pollutant and fatty acid compositions in diet and flesh of Atlantic salmon (Salmo salar). Br. J. Nut., 10(10), 1442−1451., PMid:20193093 DOI:
  115. Sunarso, J., Ismadji, S. (2009). Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: a review. J Hazard Mater., 161, 1-20. 008.03.069, PMid:18434005 DOI:
  116. Tanaka, K. (2003). Solvent-free organic synthesis. Wiley-VHC, Weinheim. DOI:
  117. Taygerly, J.P., Miller, L.M., Yee, A., Peterson, E.A. (2012). A convenient guide to help selects replacement solvents for dichloromethane in chromatography. Green Chem., 14, 3020-3025. 2gc36064k DOI:
  118. Thoma, J.A. (1965). Selection of a chromatographic solvent. Anal Chem., 37, 500-508. ac60223a014 DOI:
  119. TTobiszewski, M., Tsakovski, S., Simeonov, V., Namieśnik, J., Pena-Pereira, F. (2015). A solvent selection guide based on chemometrics and multicriteria decision analysis. Green Chem., 17, 4773-4785. DOI:
  120. DOI:
  121. Trickey, J.P. (1927). Certain Solvent Properties of Furfural and Its Derivatives. Ind. Eng. Chem., 19(5), 643−644. DOI:
  122. Trimble, F. (1941). Furfural as a Solvent. Ind. Eng. Chem., 33(5), 660−662. DOI:
  123. Trujillo-Rodríguez, M.J., Nan, H., Varona, M., Emaus, M.N., Souza, I.D., Anderson, J.L. (2019). Advances of ionic liquids in analytical chemistry. Anal Chem., 91, 505-531., PMid:30335970 DOI:
  124. Trujillo-Rodríguez, M.J., Rocío-Bautista, P., Pino, V., Afonso, A.M. (2013). Ionic liquids in dispersive liquid-liquid microextraction. Trac Trends Anal Chem., 51, 87-106. DOI:
  125. Tsekova, D.S., Saez, J.A., Escuder, B., Miravet, J.F. (2009). Solvent-free construction of self-assembled 1D nanostructures from low-molecular-weight organogelators: sublimation vs. gelation. Soft Matt., 5, 3727-3735. DOI:
  126. Vanderveen, J.R., Durelle, J., Jessop, P.G. (2014). Design and evaluation of switchable-hydrophilicity solvents. Green Chem., 16, 1187-1197. DOI:
  127. Vankelecom, I.F.J., Gevers, L.E.M. (2005). Green separation processes fundamentals and applications. Membrane Processes., Wiley-VCH, Weinheim. 251-270. DOI:
  128. Wasserscheid, P., Welton, T. (2003). Ionic liquids in synthesis. Wiley, Weinheim. 527600701 DOI:
  129. Welton, T. (2015). Solvents and sustainable chemistry. Proc R Soc A., 471, 20150502. 98/rspa.2015.0502, PMid:26730217 PMCid:PMC4685879 DOI:
  130. Williams, J.R., Clifford, A.A. (2000). Supercritical fluid methods and protocols. Humana Press Totowa, Totowa. DOI:
  131. Yeo, S.D., Kiran, E. (2005). Formation of polymer particles with supercritical fluids: a review. J Super Fluid., 34, 287-308. DOI:
  132. Yilmaz, E., Soylak, M. (2015). Switchable solvent-based liquid-phase microextraction of copper (II): optimization and application to environmental samples. J. Anal. At. Spectrometry, 30(7), 1629-1635. DOI:
  133. Yilmaz, V, Soylak, M. (2015). Switchable polarity solvent for liquid-phase microextraction of Cd (II) as pyrrolidinedithiocarbamate chelates from environmental samples. Anal. Chem. Acta., 886, 75-82.
  134., PMid:26320638 DOI:
  135. Zhang, H., Tang, B., Row, K. (2014). Extraction of catechin compounds from green tea with a new green solvent. Chem. Res. Chin. Univ., 30, 37-41. DOI:
  136. Zhang, W. (2009). Green chemistry aspects of fluorous techniques-opportunities and challenges for small-scale organic synthesis. Green Chem., 11, 911-920. DOI:
  137. Zhang, W., Cai, C. (2008). New chemical and biological applications of fluorous technologies. Chem Commun., 5686-5694., PMid:19009050 DOI: