Main Article Content

Abstract

Purpose: Generally, conventional or volatile organic solvents are extracted from petroleum resources and other such resources harmful to living species' environment and wellbeing. Because of this severe threat, researchers developed some eco-friendly alternations to circumvent the difficulties associated with traditional solvents. This review paper provides an overview of different alternatives or substitutes to overcome the toxicity of conventional solvents.


Methodology: The properties of a green solvent, tools, and techniques used to measure the greenness of solvent, its parameters, classification, and applications in various fields are the factors reviewed in this study.


Principal Findings: Chemical and pharmaceutical industries use around 80% of chemical-based solvents out of the total volume for various chemical procedures. The evolution of green chemistry has led to the development of green solvents.


Implications: The use of non-conventional solvents also offers prospects for facilitating the recycling and recovery of the solvents.


Novelty: The novelty of this work includes its eco-friendliness and sustainability over traditional organic solvents. Along with these, green solvents can be recycled for further use. On a green note, we have discussed various types of solvents, parameters, their properties and applications in different fields in this chapter. And all of them possess some unique characteristics and advantages over conventional organic solvents. Some of them are completely eco-friendly and others in a way require some research and enhancement in techniques to behave like one.

Keywords

Green Solvent Classification Properties Application

Article Details

How to Cite
Banger, A., Srivastava, A., Yadav, A., Sharma, R., & Srivastava, M. (2023). Application of Green Solvent in Green Chemistry: An overview. Green Chemistry & Technology Letters, 9(1), 01–14. https://doi.org/10.18510/gctl.2023.911

References

  1. Abbott, T.P., Kleiman, R. (1991). Solvent selection guide for counter-current chromatography. J Chromatogr A., 538, 109-118. https://doi.org/10.1016/S0021-9673(01)91627-9 DOI: https://doi.org/10.1016/S0021-9673(01)91627-9
  2. Abou-Shehada, S., Clark, J.H., Paggiola, G., Sherwood, J. (2016). Tunable solvents: shades of green. Chem Eng Process., 99, 88-96. https://doi.org/10.1016/j.cep.2015.07.005
  3. Abou-Shehada, S., Clark, J.H., Paggiola, G., Sherwood, J. (2016). Tunable solvents: shades of green. Chem Eng Process., 99, 88-96. https://doi.org/10.1016/j.cep.2015.07.005 DOI: https://doi.org/10.1016/j.cep.2015.07.005
  4. An, J., Rahn, K.L., Anderson, J.L. (2017). Headspace single-drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents. Talanta., 167, 268-278.
  5. https://doi.org/10.1016/j.talanta.2017.01.079, PMid:28340720 DOI: https://doi.org/10.1016/j.talanta.2017.01.079
  6. Anugwom, I., Maki-Arvela, P., Virtanen, P., Willfor, S., Sjöholm, R., Mikkola, J.P. (2012). Selective extraction of hemicelluloses from spruce using switchable ionic liquids. Carbo. Poly., 87(3), 2005−2011.
  7. https://doi.org/10.1016/j.carbpol.2011.10.006 DOI: https://doi.org/10.1016/j.carbpol.2011.10.006
  8. Atilio de Frias, J. A., Feng, H. (2014). Pretreatment of furfural residues with switchable butadiene sulfone in the sugarcane bagasse biorefinery. Green Chem., 16(5), 2779−2787. https://doi.org/10.1039/c3gc42632g DOI: https://doi.org/10.1039/c3gc42632g
  9. Aymonier, C., Loppinet-Serani, A., Reveron, H., Garrabos, Y., Cansell, F. (2006). Review of supercritical fluids in inorganic materials science. J Super Fluid., 38, 242-251. https://doi.org/10.1016/j.supflu.2006.03.019 DOI: https://doi.org/10.1016/j.supflu.2006.03.019
  10. Bai, Y., Essehli, R., Jafta, C.J., Livingston, K.M., Belharouak, I. (2021). Recovery of Cathode Materials and Aluminum Foil Using a Green Solvent. ACS Sustainable Chemistry & Engineering, 9(17), 6048–6055. https://doi:10.1021/acssuschemeng.1c01293 DOI: https://doi.org/10.1021/acssuschemeng.1c01293
  11. Bajkacz, S., Adamek, J. (2017). Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta., 168, 329-335. https://doi.org/10.1016/j.talanta.2017.02.065, PMid:28391863 DOI: https://doi.org/10.1016/j.talanta.2017.02.065
  12. Ballesteros-Go'mez, A., Rubio, S., Pe'rez-Bendito, D. (2009). Potential of supramolecular solvents for the extraction of contaminants in liquid foods. J. Chromatogr. A., 1216(3), 530-539. https://doi.org/10.10 16/j.chroma.2008.06.029, PMid:18603255 DOI: https://doi.org/10.1016/j.chroma.2008.06.029
  13. Ballesteros-Gomez, A., Sicilia, M.D., Rubio, S. (2010). Supramolecular solvents in the extraction of organic compounds. A review. Anal. Chem. Acta., 677(2), 108-130. https://doi.org/10.1016/j.aca.2010.07.027, PMid:20837178 DOI: https://doi.org/10.1016/j.aca.2010.07.027
  14. Barthel-Rosa, L.P., Gladysz, J.A. (1999). Chemistry in fluorous media: a user's guide to practical considerations in the application of fluorous catalysts and reagents. Coord Chem Rev., 192, 587-605. https://doi.org/10.1016/S 0010-8545(99)00102-2 DOI: https://doi.org/10.1016/S0010-8545(99)00102-2
  15. Bera, A., Belhaj, H. (2016). Ionic liquids as alternatives of surfactants in enhanced oil recovery-a state-of-the-art review. J. Mol. Liq., 224, 177-188. https://doi.org/10.1016/j.molliq.2016.09.105 DOI: https://doi.org/10.1016/j.molliq.2016.09.105
  16. Boyd, A.R., Champagne, P., McGinn, P.J., MacDougall, K.M., Melanson, J.E., Jessop, P.G. (2012). Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production. Bio. Technol., 118, 628−632, https://doi.org/10.1016/j.biortech.2012.05.084, PMid:22721685 DOI: https://doi.org/10.1016/j.biortech.2012.05.084
  17. Breeden, S.W., Clark, J.H., Macquarrie, D.J., Sherwood, J. (2012). Green techniques for organic synthesis and medicinal chemistry. Green Solvents. Wiley, Chichester. 241-261. https://doi.org/10.1002/9780470711828.ch9 DOI: https://doi.org/10.1002/9780470711828.ch9
  18. Cai, C.M., Zhang, T., Kumar, R., Wyman, C.E. (2014). Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J. Chem. Technol. Biotech., 89(1), 2−10.
  19. https://doi.org/10.1002/jctb.4168 DOI: https://doi.org/10.1002/jctb.4168
  20. Capello, C., Fischer, U., Hungerbühler, K. (2007). What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 9(9), 927. https://doi.org/10.1039/b617536h
  21. Capello, C., Fischer, U., Hungerbühler, K. (2007). What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 9, 927-934. https://doi.org/10.1039/b617536h DOI: https://doi.org/10.1039/b617536h
  22. Cavazzini, M., Montanari, F., Pozzi, G., Quici, S. (1999). Perfluorocarbon-soluble catalysts and reagents and the application of FBS (fluorous biphase system) to organic synthesis. J Fluorine Chem., 94, 183-193. https://doi.or g/10.1016/S0022-1139(98)00358-3 DOI: https://doi.org/10.1016/S0022-1139(98)00358-3
  23. Ciriminna, R., Katryniok, B., Paul, S.B., Dumeignil, F., Pagliaro, M. (2015). Glycerol-Derived Renewable Polyglycerols: A Class of Versatile Chemicals of Wide Potential Application. Org. Process Res. Dev., 19(7), 748−754. https://doi.org/10.1021/op500313x DOI: https://doi.org/10.1021/op500313x
  24. Clark, J.H., Farmer, T.J., Hunt, A.J., Sherwood, J. (2015). Opportunities for biobased solvents created as petrochemical and fuel products transition towards renewable resources. Int J Mol Sci., 16, 17101-17159. https://doi.org/10.3390/ijms160817101, PMid:26225963 PMCid:PMC4581186 DOI: https://doi.org/10.3390/ijms160817101
  25. Clarke, C.J., Tu, W.-C., Levers, O., Bröhl, A., Hallett, J.P. (2018). Homogenous catalysis in supercritical fluids. Chem Rev., 118, 747-800. https://doi.org/10.1021/acs.chemrev.7b00571, PMid:29300087 DOI: https://doi.org/10.1021/acs.chemrev.7b00571
  26. Constable, D.J.C., Jimenez-Gonzalez, C., Henderson, R.K. (2007). Perspective on solvent use in the pharmaceutical industry. Org Process Res Dev., 11, 133-137. https://doi.org/10.1021/op060170h DOI: https://doi.org/10.1021/op060170h
  27. Cornils, B. (1997). Fluorous biphase systems-the new phase-separation and immobilization technique. Angew Chem Int Ed., 36, 2057-2059. https://doi.org/10.1002/anie.199720571 DOI: https://doi.org/10.1002/anie.199720571
  28. Cunha, S.C., Fernandes, J.O. (2018). Extraction techniques with deep eutectic solvents. Trac Trends Anal Chem.,105, 225-239. https://doi.org/10.1016/j.trac.2018.05.001 DOI: https://doi.org/10.1016/j.trac.2018.05.001
  29. Curran, D. (2001). Fluorous techniques for the synthesis and separation of organic molecules. Green Chem., 3(1), G3-G7. https://doi.org/10.1039/b100266j DOI: https://doi.org/10.1039/b100266j
  30. Curran, D.P. (1998). Strategy-level separations in organic synthesis: from planning to practice. Angew Chem Int Ed., 37, 1174-1196. https://doi.org/10.1002/(SICI)1521-3773(19980518)37:9<1174::AID-ANIE1174>3.0.CO;2-P DOI: https://doi.org/10.1002/(SICI)1521-3773(19980518)37:9<1174::AID-ANIE1174>3.0.CO;2-P
  31. Curzons, A.D., Constable, D.C., Cunningham, V.L. (1999). Solvent selection guide: a guide to the integration of environmental, health and safety criteria into the selection of solvents. Clean Prod Process., 1, 82-90. https://doi.org/10.1007/s100980050014 DOI: https://doi.org/10.1007/s100980050014
  32. Diorazio, L.J., Hose, D.R.J., Adlington, N.K. (2016). Toward a more holistic framework for solvent selection. Org Process Res Dev., 20, 760-773. https://doi.org/10.1021/acs.oprd.6b00015 DOI: https://doi.org/10.1021/acs.oprd.6b00015
  33. Dunford, N.T., Temelli, F., LeBlanc, E. (1997). Supercritical CO2 extraction of oil and residual proteins from Atlantic mackerel (Scomber scombrus) as affected by moisture content. J. Food Sci., 62(2), 289−294. https://doi.org/10.1111/j.1365-2621.1997.tb03987.x DOI: https://doi.org/10.1111/j.1365-2621.1997.tb03987.x
  34. Earle, M.J., Seddon, K.R. (2000). Ionic liquids green solvents for the future. Pure App Chem., 72, 1391-1398. https://doi.org/10.1351/pac200072071391 DOI: https://doi.org/10.1351/pac200072071391
  35. Eastman, H.E., Jamieson, C., Watson, A.J.B. (2015). Development of solvent selection guides. Aldrichimica Acta., 48, 51-55.
  36. Espino, M., de los Ãngeles Fernández M., Gomez, F.J.V., Silva, M.F. (2016). Natural designer solvents for greening analytical chemistry. TrAC - Trends Anal. Chem., 76, 126-136. https://doi.org/10.1016/j.tra c.2015.11.006 DOI: https://doi.org/10.1016/j.trac.2015.11.006
  37. Fang, V, Yeung, H.W., Leung, H.W., Huie, C.W. (2000). Micelle-mediated extraction and preconcentration of ginsenosides from Chinese herbal medicine, J. Chromatogr. A., 904(1), 47-55.https://doi.org/10.1016/S0021-9673(00)00911-0 DOI: https://doi.org/10.1016/S0021-9673(00)00911-0
  38. Ferrera, Z.S., Sanz, C.P., Santana, C.M., Rodrıguez, J.J.S. (2004). The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples. Trends Anal. Chem., 23(7), 469-479.https://doi.org/10.1016/S0165-9936(04)00732-0 DOI: https://doi.org/10.1016/S0165-9936(04)00732-0
  39. Filly, A., Fabiano-Tixier, A.S., Fernandez, X., Chemat, F. (2015). Alternative solvents for extraction of food aromas. Experimental and COSMO-RS study. LWT - Food Sci. Technol., 61, 33-40. https://doi.org/10.1016/j .lwt.2014.11.021 DOI: https://doi.org/10.1016/j.lwt.2014.11.021
  40. Fine, F., Vian, M.A., Tixier, A.-S.F., Carre, P., Pages, X., Chemat, F. (2013). Les agro-solvants pour l'extraction des huiles végétales issues de graines oléagineuses. OCL. 20, A502. https://doi.org/10.1051/ocl/2013020 DOI: https://doi.org/10.1051/ocl/2013020
  41. Fischer, V., Touraud, D., Kunz, W. (2016). Eco-friendly one pot synthesis of caffeic acid phenethyl ester (CAPE) via an in-situ formed deep eutectic solvent. Sustain. Chem. Pharm., 4, 40-45. https://doi.org/10.1016/j .scp.2016.08.002
  42. Fischer, V., Touraud, D., Kunz, W. (2016). Eco-friendly one-pot synthesis of caffeic acid phenethyl ester (CAPE) via an in-situ formed deep eutectic solvent. Sustain. Chem. Pharm., 4, 40-45.
  43. https://doi.org/10.1016/j.scp.2016.08.002 DOI: https://doi.org/10.1016/j.scp.2016.08.002
  44. Fu, D., Farag, S., Chaouki, J., Jessop, P.G. (2014). Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent. Bioresour. Technol., 154, 101−108. https://doi.org/10.1016/j.biortec h.2013.11.091, PMid:24384316 DOI: https://doi.org/10.1016/j.biortech.2013.11.091
  45. Garcı'a-Fonseca, S., Ballesteros-Go'mez, A., Rubio, S. (2016). Restricted access to supramolecular solvents for sample treatment in the enzyme-linked immunosorbent assay of mycotoxins in food, Anal. Chem. Acta., 935, 129-135. https://doi.org/10.1016/j.aca.2016.06.042, PMid:27543022 DOI: https://doi.org/10.1016/j.aca.2016.06.042
  46. Gladysz, J.A., Curran, D.P., Horvath, I.T. (2004). Handbook of fluorous chemistry. Wiley-VCH, Weinheim. https://doi.org/10.1002/3527603905 DOI: https://doi.org/10.1002/3527603905
  47. Gomez, F.J.V., Espino, M., Fernández, M.A., Silva, M.F. (2018). A Greener Approach to Prepare Natural Deep Eutectic Solvents. Chem Select., 3, 6122-6125. https://doi.org/10.1002/slct.201800713 DOI: https://doi.org/10.1002/slct.201800713
  48. Goodship, V., Ogur, E.O. (2004). Polymer processing with supercritical fluids. Rapra review reports. Rapra Technology Ltd, Shawbury.
  49. Gu, Y., Jerome, F. (2013). Bio-based solvents: an emerging generation of fluidsfor the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev. 42, 9550-9570. https://doi.org/10.1039/c3 cs60241a, PMid:24056753 DOI: https://doi.org/10.1039/c3cs60241a
  50. Gupta, A., Verma, J.P. (2015). Sustainable bio-ethanol production from agro-residues: a review. Renew. Sustain. Energy Rev., 41, 550-567. https://doi.org/10.1016/j.rser.2014.08.032 DOI: https://doi.org/10.1016/j.rser.2014.08.032
  51. Häckl, K., Kunz, W. (2018). Some aspects of green solvents. Comptes Rendus Chimie., 21(6), 572-580.
  52. https://doi.org/10.1016/j.crci.2018.03.010 DOI: https://doi.org/10.1016/j.crci.2018.03.010
  53. Herrero, M., Cifuentes, A., Ibanez, E. (2006). Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem., 98(1), 136−148. https://doi.org/10.1016/j.foodchem.2005.05.058 DOI: https://doi.org/10.1016/j.foodchem.2005.05.058
  54. Herrero, M., Mendiola, J.A., Cifuentes, A., Ibanez, E. (2010). Supercritical fluid extraction: recent advances and applications. J Chroma A., 1217, 2495-2511. https://doi.org/10.1016/j.chroma.2009.12.019, PMid:20022016 DOI: https://doi.org/10.1016/j.chroma.2009.12.019
  55. Hobbs, H.R., Thomas, N.R. (2007). Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev., 107, 2786-2820. https://doi.org/10.1021/cr0683820, PMid:17564485 DOI: https://doi.org/10.1021/cr0683820
  56. Horvath, I.T., R ' abai, J. (1994). Facile catalyst separation without water: ' fluorous biphase hydroformylation of olefins. Science., 266, 72-75. https://doi.org/10.1126/science.266.5182.72, PMid:17814001 DOI: https://doi.org/10.1126/science.266.5182.72
  57. Hyde, J.R., Licence, P., Carter, D., Poliakoff, M. (2001). Continuous catalytic reactions in supercritical fluids. App Cat A Gen., 222, 119-131. https://doi.org/10.1016/S0926-860X(01)00835-3 DOI: https://doi.org/10.1016/S0926-860X(01)00835-3
  58. Jessop, P.G. (2011). Searching for green solvents. Green Chem., 13, 1391-1398. https://doi.org/10.1039/c0g c00797h
  59. Jessop, P.G. (2011). Searching for green solvents. Green Chem., 13(6), 1391−1398. https://doi.org/10.1039/c0g c00797h DOI: https://doi.org/10.1039/c0gc00797h
  60. Jessop, P.G. (2015). Switchable solvents as media for synthesis and separations. Aldrichimica Acta., 48, 18−21.
  61. Jessop, P.G., Leitner, W. (1999). Chemical synthesis using supercritical fluids. Wiley, Weinheim.
  62. https://doi.org/10.1002/9783527613687, PMCid:PMC1756857
  63. Jessop, P.G., Leitner, W. (1999). Chemical synthesis using supercritical fluids. Wiley-VCH, Weinheim.
  64. https://doi.org/10.1002/9783527613687, PMCid:PMC1756857 DOI: https://doi.org/10.1002/9783527613687
  65. Jessop, P.G., Phan, L., Carrier, A., Robinson, S., Dürr, C.J., Harjani, J.R. (2010). A solvent having switchable hydrophilicity. Green Chem., 12, 809. https://doi.org/10.1039/b926885e DOI: https://doi.org/10.1039/b926885e
  66. Khezeli, T., Daneshfar, A. (2017). Synthesis and application of magnetic deep eutectic solvents: novel solvents for ultrasound-assisted liquid-liquid microextraction of thiophene. Ultrason. Sonochem., 38, 590-597. https://doi.org/10.1016/j.ultsonch.2016.08.023, PMid:27562909 DOI: https://doi.org/10.1016/j.ultsonch.2016.08.023
  67. Kim Alfonsi, K., Colberg, J., Dunn, P.J., Fevig, T., Jennings, S., Johnson, T.A., Kleine, H.P., Knight, C., Nagy, M.A., Perry, D.A., Stefaniak, M. (2008). Green chemistry tools to influence a medicinal chemistry and research chemistry-based organisation. Green Chem., 10, 31-36. https://doi.org/10.1039/B711717E DOI: https://doi.org/10.1039/B711717E
  68. Kitazume, T. (2000). Green chemistry development in fluorine science. J Fluorine Chem., 105, 265-278.
  69. https://doi.org/10.1016/S0022-1139(99)00269-9 DOI: https://doi.org/10.1016/S0022-1139(99)00269-9
  70. Knothe, G., Steidley, K.R. (2011). Fatty acid alkyl esters as solvents: evaluation of the kauri-butanol value. Comparison to hydrocarbons, dimethyl diesters, and other oxygenates. Ind. Eng. Chem. Res., 50(7), 4177−4182. https://doi.org/10.1021/ie1023172 DOI: https://doi.org/10.1021/ie1023172
  71. Kokosa, J.M. (2019). Selecting an extraction solvent for a greener liquid-phase microextraction (LPME) mode based analytical method. Trends Anal. Chem. 118, 238-247. https://doi.org/10.1016/j.trac.2019.05.012 DOI: https://doi.org/10.1016/j.trac.2019.05.012
  72. Kudłak, B., Owczarek, K., Namiesnik, J. (2015). Selected issues related to the toxicity of ionic liquids and deep eutectic solvents- a review. Environ Sci Poll Res., 22, 11975-11992. https://doi.org/10.1007/s11356-015-4794-y, PMid:26040266 DOI: https://doi.org/10.1007/s11356-015-4794-y
  73. Li, S., Yan, W., Zhang, W. (2009). Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem., 11, 1618-1626. https://doi.org/10.1039/b913056j DOI: https://doi.org/10.1039/b913056j
  74. Liu, Y., Friesen, J.B., McAlpine, J.B., Lankin, D.C., Chen, S.-N., Pauli, G.F. (2018). Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod., 81, 679-690. https://doi.org/10.1021/acs.j natprod.7b00945, PMid:29513526 PMCid:PMC5913660 DOI: https://doi.org/10.1021/acs.jnatprod.7b00945
  75. Lo'pez-Jime'nez, F.J., Rubio, S., Pe'rez-Bendito, D. (2010). Supramolecular solvent-based microextraction of Sudan dyes in chilli-containing foodstuffs before their liquid chromatography-photodiode array determination. Food Chem., 121(3), 763-769. https://doi.org/10.1016/j.foodchem.2009.12.081 DOI: https://doi.org/10.1016/j.foodchem.2009.12.081
  76. MacMillan, D.S., Murray, J., Sneddon, H.F., Jamieson, C., Watson, A.J.B. (2013). Evaluation of alternative solvents in common amide coupling reactions: replacement of dichloromethane and N, N-dimethylformamide. Green Chem., 15, 596-600. https://doi.org/10.1039/c2gc36900a DOI: https://doi.org/10.1039/c2gc36900a
  77. MacMillan, D.S., Murray, J., Sneddon, H.F., Jamieson, C., Watson, A.J.B. (2012). Replacement of dichloromethane within chromatographic purification: a guide to alternative solvents. Green Chem., 14, 3016-3019.https://doi.org/10.1039/c2gc36378j DOI: https://doi.org/10.1039/c2gc36378j
  78. Mantell, C., Casas, L., Rodríguez, M., de la Ossa, E.M. (2013). Supercritical fluid extraction. Separat and Puri Tech in Bioref., 79−100. https://doi.org/10.1002/9781118493441.ch4 DOI: https://doi.org/10.1002/9781118493441.ch4
  79. Marriott, R., Sin, E. (2012). Supercritical CO2 as an Environmentally Benign Medium for Biorefinery. Role of Green Chem in Bio Proc and Con., 181−204. https://doi.org/10.1002/9781118449400.ch5 DOI: https://doi.org/10.1002/9781118449400.ch5
  80. Martínez, J.L. (2008). Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/9781420006513.ch2 DOI: https://doi.org/10.1201/9781420006513.ch2
  81. Martins, M.A.R., Pinho, S.P., Coutinho, J.A.P. (2019). Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solution Chem., 48, 962-982. https://doi.org/10.1007/s10953-018-0793-1 DOI: https://doi.org/10.1007/s10953-018-0793-1
  82. McGonagle, F.I., MacMillan, D.S., Murray, J., Sneddon, H.F., Jamieson, C., Watson, A.J.B. (2013). Development of a solvent selection guide for aldehyde-based direct reductive amination processes. Green Chem., 15, 1159-1165. https://doi.org/10.1039/c3gc40359a DOI: https://doi.org/10.1039/c3gc40359a
  83. Melnyk, A., Namiesnik, J., Wolska, L. (2015). Theory and recent applications of coacervate-based extraction techniques. Trac Trends Anal Chem., 71, 282-292. https://doi.org/10.1016/j.trac.2015.03.013 DOI: https://doi.org/10.1016/j.trac.2015.03.013
  84. Mendes, R. L., Fernandes, H.L., Coelho, J., Reis, E.C., Cabral, J., Novais, J.M., Palavra, A.F. (1995). Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem., 53(1), 99−103. https://doi.org/10.1016/0308-8146(95)95794-7 DOI: https://doi.org/10.1016/0308-8146(95)95794-7
  85. Mendes, R.L., Fernandes, H.L., Coelho, J.A., Cabral, J.M., Palavra, A.M., Novais, J.M. (1994). Supercritical carbon dioxide extraction of hydrocarbons from the microalga Botryococcus braunii. J. Appl. Phycol., 6(3), 289−293. https://doi.org/10.1007/BF02181941 DOI: https://doi.org/10.1007/BF02181941
  86. Mishima, K. (2008). Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Adv Drug Deli Rev., 60, 411-432. https://doi.org/10.1016/j.addr.2007.02.003, PMid:18061302 DOI: https://doi.org/10.1016/j.addr.2007.02.003
  87. Moral, A., Sicilia, M.D., Rubio, S. (2009). Determination of benzimidazolic fungicides in fruits and vegetables by supramolecular solvent-based microextraction/liquid chromatography/fluorescence detection. Anal. Chem. Acta., 650(2), 207-213. https://doi.org/10.1016/j.aca.2009.07.056, PMid:19720194 DOI: https://doi.org/10.1016/j.aca.2009.07.056
  88. Murray, P.M., Bellany, F., Benhamou, L., BuÄar, D.K., Tabor, A.B., Sheppard, T.D. (2016). The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. Org Biomol Chem., 14, 2373-2384. https://doi.org/10.1039/C5OB01892G, PMid:26699438 DOI: https://doi.org/10.1039/C5OB01892G
  89. Owczarek, K., Szczepanska, N., Plotka-Wasylka, J., Rutkowska, M., Shyshchak, O., Bratychak, M., Namiesnik, J. (2016). Natural deep eutectic solvents in extraction process. Chem. Chem. Technol., 10(4), 601-606. https://doi.org/10.23939/chcht10.04si.601 DOI: https://doi.org/10.23939/chcht10.04si.601
  90. Payne, S.M., Kerton, F.M. (2010). Solubility of bio-sourced feedstocks in 'green solvents. Green Chem., 12(9), 1648−1653. https://doi.org/10.1039/c0gc00205d DOI: https://doi.org/10.1039/c0gc00205d
  91. Pena-Pereira, F., Kloskowski, A., Namieśnik, J. (2015). Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a novel generation of eco-friendly alternatives. Green Chem., 17, 3687-3705. https://doi.org/10.1039/C5GC00611B DOI: https://doi.org/10.1039/C5GC00611B
  92. PLotka-Wasylka, J., Rutkowska, M., Owczarek, K., Tobiszewski, M., Namiesnik, J. (2017). Extraction of environmentally friendly solvents. Trac Trends Anal Chem., 91, 12-25. https://doi.org/10.1016/j.trac.2017. 03.006 DOI: https://doi.org/10.1016/j.trac.2017.03.006
  93. Pollet, P., Davey, E.A., Ureña-Benavides, E.E., Eckert, C.A., Liotta, C.L. (2014). Solvents for sustainable chemical processes. Green Chem., 16, 1034-1055. https://doi.org/10.1039/C3GC42302F DOI: https://doi.org/10.1039/C3GC42302F
  94. Prajapati, D., Gohain, M. (2004). Recent advances in the application of supercritical fluids for carbon-carbon bond formation in organic synthesis. Tetrahedron., 60, 815-833. https://doi.org/10.1016/j.tet.2003.10.075 DOI: https://doi.org/10.1016/j.tet.2003.10.075
  95. Prat, D., Hayler, J., Wells, A. (2014). A survey of solvent selection guides. Green Chem., 16, 4546-4551.
  96. https://doi.org/10.1039/C4GC01149J DOI: https://doi.org/10.1039/C4GC01149J
  97. Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C.R., Abou-Shehada, S., Dunn, P.J. (2016). CHEM21 selection guide of classical- and less classical-solvents. Green Chem., 18, 288-296.
  98. https://doi.org/10.1039/C5GC01008J DOI: https://doi.org/10.1039/C5GC01008J
  99. Procopio, D., Siciliano, C., Trombino, S., Dumitrescu, D.E., Suciu, F., Gioia, M.L.D. (2022). Green solvents for the formation of amide linkages. Org. Biomol. Chem., 20, 1137-1149. https://doi.org/10.1039/D1OB01814K DOI: https://doi.org/10.1039/D1OB01814K
  100. Ramsey, E., Sun, Q., Zhang, Z., Zhang, C., Gou, W. (2009). Mini-review: green sustainable processes using supercritical fluid carbon dioxide. J Environ Sci., 21, 720-726. https://doi.org/10.1016/S1001-0742(08)62330-X DOI: https://doi.org/10.1016/S1001-0742(08)62330-X
  101. Reichardt, C. (1979). Solvent effects in organic chemistry. Verlag Chemie, Weinheim.
  102. Rezaei, F., Yamini, Y., Moradi, M., Daraei, B. (2013). Supramolecular solvent-based hollow fibre liquid-phase microextraction of benzodiazepines. Anal. Chem. Acta., 804, 135-142. https://doi.org/10.1016/j.aca.2013.10.026, PMid:24267074 DOI: https://doi.org/10.1016/j.aca.2013.10.026
  103. Rothenberg, G., Downie, A.P., Raston, C.L., Scott, J.L. (2001). Understanding solid/solid organic reactions. J Am Chem Soc., 123, 8701-8708. https://doi.org/10.1021/ja0034388, PMid:11535074 DOI: https://doi.org/10.1021/ja0034388
  104. Samorì, C., Cespi, D., Blair, P., Galletti, P., Malferrari, D., Passarini, F., et al. (2017). Application of switchable hydrophilicity solvents for recycling multilayer packaging materials. Green Chem., 19(7), 1714-1720. https://doi.org/10.1039/C6GC03535C DOI: https://doi.org/10.1039/C6GC03535C
  105. Sarrade, S., Guizard, C., Rios, G.M. (2003). New applications of supercritical fluids and supercritical fluids processes in separation. Sep Purif Technol., 32, 57-63. https://doi.org/10.1016/S1383-5866(03)00054-6 DOI: https://doi.org/10.1016/S1383-5866(03)00054-6
  106. Señoráns, F.J., Ibañez, E. (2002). Analysis of fatty acids in foods by supercritical fluid chromatography. Anal Chim Acta., 465, 131-144.https://doi.org/10.1016/S0003-2670(02)00208-8 DOI: https://doi.org/10.1016/S0003-2670(02)00208-8
  107. Sheldon, R.A. (2005). Green solvents for sustainable organic synthesis: state of the art. Green Chem. 7(5), 267-278. https://doi.org/10.1039/b418069k DOI: https://doi.org/10.1039/b418069k
  108. Sicaire, A., Abert Vian, M., Fine, F., Carre, P., Tostain, S., Chemat, F. (2015). Solvants alternatifs au n-hexane pour l'extraction d'huiles végéT ales (Poster).
  109. Skowerski, K., Białecki, J., Tracz, A., Olszewski, T.K. (2014). An attempt to provide an environmentally friendly solvent selection guide for olefin metathesis. Green Chem., 16, 1125-1130. https://doi.org/10.1039/C3 GC41943F DOI: https://doi.org/10.1039/C3GC41943F
  110. Smith, E.L., Abbott, A.P., Ryder, K.S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev., 114, 11060-11082. https://doi.org/10.1021/cr300162p, PMid:25300631 DOI: https://doi.org/10.1021/cr300162p
  111. Soh, L., Curry, J., Beckman, E.J., Zimmerman, J.B. (2014). Effect of system conditions on biodiesel production via transesterification using carbon dioxide-methanol mixtures in the presence of a heterogeneous catalyst. ACS Sustainable Chem. Eng., 2(3), 387−395. https://doi.org/10.1021/sc400349g DOI: https://doi.org/10.1021/sc400349g
  112. Soh, L., Zimmerman, J. (2011). Biodiesel production: the potential of algal lipids extracted with supercritical carbon dioxide. Green Chem., 13(6), 1422−1429. https://doi.org/10.1039/c1gc15068e DOI: https://doi.org/10.1039/c1gc15068e
  113. Soylak, M., Khan, M., Yilmaz, E. (2016). Switchable solvent-based liquid-phase microextraction of uranium in environmental samples: a green approach. Anal. Methods., 8(5), 979-986. https://doi.org/10.1039/C5AY02631H DOI: https://doi.org/10.1039/C5AY02631H
  114. Sprague, M., Bendiksen, E.Å., Dick, J.R., Strachan, F., Pratoomyot, J., Berntssen, M.H., Tocher, D.R., Bell, J.G. (2010). Effects of decontaminated fish oil or a fish and vegetable oil blend on persistent organic pollutant and fatty acid compositions in diet and flesh of Atlantic salmon (Salmo salar). Br. J. Nut., 10(10), 1442−1451.https://doi.org/10.1017/S0007114510000139, PMid:20193093 DOI: https://doi.org/10.1017/S0007114510000139
  115. Sunarso, J., Ismadji, S. (2009). Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: a review. J Hazard Mater., 161, 1-20. https://doi.org/10.1016/j.jhazmat.2 008.03.069, PMid:18434005 DOI: https://doi.org/10.1016/j.jhazmat.2008.03.069
  116. Tanaka, K. (2003). Solvent-free organic synthesis. Wiley-VHC, Weinheim. https://doi.org/10.1002/3527601821 DOI: https://doi.org/10.1002/3527601821
  117. Taygerly, J.P., Miller, L.M., Yee, A., Peterson, E.A. (2012). A convenient guide to help selects replacement solvents for dichloromethane in chromatography. Green Chem., 14, 3020-3025. https://doi.org/10.1039/c 2gc36064k DOI: https://doi.org/10.1039/c2gc36064k
  118. Thoma, J.A. (1965). Selection of a chromatographic solvent. Anal Chem., 37, 500-508. https://doi.org/10.1021/ ac60223a014 DOI: https://doi.org/10.1021/ac60223a014
  119. TTobiszewski, M., Tsakovski, S., Simeonov, V., Namieśnik, J., Pena-Pereira, F. (2015). A solvent selection guide based on chemometrics and multicriteria decision analysis. Green Chem., 17, 4773-4785. DOI: https://doi.org/10.1039/C5GC01615K
  120. https://doi.org/10.1039/C5GC90060C DOI: https://doi.org/10.1039/C5GC90060C
  121. Trickey, J.P. (1927). Certain Solvent Properties of Furfural and Its Derivatives. Ind. Eng. Chem., 19(5), 643−644. https://doi.org/10.1021/ie50209a048 DOI: https://doi.org/10.1021/ie50209a048
  122. Trimble, F. (1941). Furfural as a Solvent. Ind. Eng. Chem., 33(5), 660−662. https://doi.org/10.1021/ie50377a026 DOI: https://doi.org/10.1021/ie50377a026
  123. Trujillo-Rodríguez, M.J., Nan, H., Varona, M., Emaus, M.N., Souza, I.D., Anderson, J.L. (2019). Advances of ionic liquids in analytical chemistry. Anal Chem., 91, 505-531. https://doi.org/10.1021/acs.analchem.8b04710, PMid:30335970 DOI: https://doi.org/10.1021/acs.analchem.8b04710
  124. Trujillo-Rodríguez, M.J., Rocío-Bautista, P., Pino, V., Afonso, A.M. (2013). Ionic liquids in dispersive liquid-liquid microextraction. Trac Trends Anal Chem., 51, 87-106. https://doi.org/10.1016/j.trac.2013.06.008 DOI: https://doi.org/10.1016/j.trac.2013.06.008
  125. Tsekova, D.S., Saez, J.A., Escuder, B., Miravet, J.F. (2009). Solvent-free construction of self-assembled 1D nanostructures from low-molecular-weight organogelators: sublimation vs. gelation. Soft Matt., 5, 3727-3735. https://doi.org/10.1039/b902516b DOI: https://doi.org/10.1039/b902516b
  126. Vanderveen, J.R., Durelle, J., Jessop, P.G. (2014). Design and evaluation of switchable-hydrophilicity solvents. Green Chem., 16, 1187-1197. https://doi.org/10.1039/C3GC42164C DOI: https://doi.org/10.1039/C3GC42164C
  127. Vankelecom, I.F.J., Gevers, L.E.M. (2005). Green separation processes fundamentals and applications. Membrane Processes., Wiley-VCH, Weinheim. 251-270. https://doi.org/10.1002/3527606602.ch3f DOI: https://doi.org/10.1002/3527606602.ch3f
  128. Wasserscheid, P., Welton, T. (2003). Ionic liquids in synthesis. Wiley, Weinheim. https://doi.org/10.1002/3 527600701 DOI: https://doi.org/10.1002/3527600701
  129. Welton, T. (2015). Solvents and sustainable chemistry. Proc R Soc A., 471, 20150502. https://doi.org/10.10 98/rspa.2015.0502, PMid:26730217 PMCid:PMC4685879 DOI: https://doi.org/10.1098/rspa.2015.0502
  130. Williams, J.R., Clifford, A.A. (2000). Supercritical fluid methods and protocols. Humana Press Totowa, Totowa. https://doi.org/10.1385/1592590306 DOI: https://doi.org/10.1385/1592590306
  131. Yeo, S.D., Kiran, E. (2005). Formation of polymer particles with supercritical fluids: a review. J Super Fluid., 34, 287-308. https://doi.org/10.1016/j.supflu.2004.10.006 DOI: https://doi.org/10.1016/j.supflu.2004.10.006
  132. Yilmaz, E., Soylak, M. (2015). Switchable solvent-based liquid-phase microextraction of copper (II): optimization and application to environmental samples. J. Anal. At. Spectrometry, 30(7), 1629-1635. https://doi.org/10.1039/C5JA00012B DOI: https://doi.org/10.1039/C5JA00012B
  133. Yilmaz, V, Soylak, M. (2015). Switchable polarity solvent for liquid-phase microextraction of Cd (II) as pyrrolidinedithiocarbamate chelates from environmental samples. Anal. Chem. Acta., 886, 75-82.
  134. https://doi.org/10.1016/j.aca.2015.06.021, PMid:26320638 DOI: https://doi.org/10.1016/j.aca.2015.06.021
  135. Zhang, H., Tang, B., Row, K. (2014). Extraction of catechin compounds from green tea with a new green solvent. Chem. Res. Chin. Univ., 30, 37-41. https://doi.org/10.1007/s40242-014-3339-0 DOI: https://doi.org/10.1007/s40242-014-3339-0
  136. Zhang, W. (2009). Green chemistry aspects of fluorous techniques-opportunities and challenges for small-scale organic synthesis. Green Chem., 11, 911-920. https://doi.org/10.1039/b820740b DOI: https://doi.org/10.1039/b820740b
  137. Zhang, W., Cai, C. (2008). New chemical and biological applications of fluorous technologies. Chem Commun., 5686-5694. https://doi.org/10.1039/b812433g, PMid:19009050 DOI: https://doi.org/10.1039/b812433g