Main Article Content

Abstract

The addition of traces of Au(III) chloride with Ce(IV) sulphate (catalyst: substrate ratio (1: 80 to 1: 300)) and in case of  Cu(II) sulphate with Ce(IV) sulphate(catalyst: substrate ratio (1: 60 to 1: 250)) in solution phase under microwave irradiation resulted in good to excellent yields of corresponding to phenol, quinone and carbonyl compounds. In case of  oxidation of anthracene, phenanthrene, naphthalene, cyclohexane and toluene dissolved in acetic acid to give 95.02 %, 85.25%, 34.68%, 40.94%, and 56.54% yields in case of gold catalyst and 93.5%, 83.4%, 24.68%, 38.25% and 47.11% yields in case of copper as a catalyst.  Phenanthrene was oxidized in 9-Fluorenone instead of phenanthraquinone to get the benzylic rearrangement.

Keywords

Aromatic hydrocarbons Oxidation Cerium(IV) sulphate Ce(IV)-Au(III) Ce(IV)-Cu(II) system Characterization Microwave Synthesizer.

Article Details

How to Cite
Srivastava, M., Goyal, A., Srivastava, A., Mishra, A., & Tomar, P. (2016). AU(III) AND CU(II) CATALYST FOR OXIDATION OF AROMATIC AND CYCLIC HYDROCARBON BY CERIUM (IV) IN ACIDIC MEDIUM UNDER MICROWAVE IRRADIATION. Green Chemistry & Technology Letters, 2(4), 199–205. https://doi.org/10.18510/gctl.2016.246

References

  1. Bond, G. C.; Louis, C. Catalysis by Gold, Imperial College Press, London (2006). (b) Hashmi, A.S.K.; Hutchings, G.J. Angew. Chem. Int. Ed. 45, p. 7896, (2006). (c) Thompson, D.T. Topics in Catalysis. 38, p. 231, (2006). (d) Hashmi, A.S.K. Gold nanoparticle catalyzed oxidation of alcohols From biomass to commodity chemicals. Chem. Rev. 107, p. 3180, (2007).
  2. Hammer, B.; Norskov, J.K. CO oxidation on gold nanoparticles: Theoretical studies. Nature 376 238. (1995). DOI: https://doi.org/10.1038/376238a0
  3. Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M.J.; Delmon, B. CO oxidation on gold nanoparticlest theoretical studies. J. Catal. 144, 175, (1993). DOI: https://doi.org/10.1006/jcat.1993.1322
  4. Haruta, M. Catalytic Role of gold in gold based catalysts: A density functional theory study on the co oxidation on gold. M. Appl. Catal. A. Gen. 222, 427, (2001).
  5. Hammer, B.; Norskov, J. K. Catalytic role of gold in gold based catalysts: A density functional theory study on the co oxidation on gold. Nature. 376, 238, (1995). DOI: https://doi.org/10.1038/376238a0
  6. Valden, M.; Lai. X.; Goodman, D. W. Catalytic role of gold in gold based catalysts: A density functional theory study on the co oxidation on gold. Science. 281, 1637, (1998).
  7. Rossi, L. M. Gold nanoparticle catalyzed oxidation of alcohols from biomass to commodity chemicals. Journal of Catalysis. 176, p. 552, (1998). DOI: https://doi.org/10.1006/jcat.1998.2078
  8. Abad, A.; Concepción, P. Gold nanoparticle catalyzed oxidation of alcohols from biomass to commodity chemicals. Angew. Chem. Int. Ed. 44, p. 4066.9 (2005) (b) Edwards, D.I.; Gold nanoparticle catalyzed oxidation of alcohols from biomass to commodity chemicals Science. 311, p. 362, (2006).
  9. (a) Zhao, R. ; Chem. Commun, p. 904 (2004), (b) Xu, Y. Catal. Lett. 101, p. 175, (2005).
  10. Hashmi, A.S.K. Nanocrystalline gold and gold–palladium alloy oxidation catalysts: a persona reflection on the nature of the active sites. Gold Bull. 37, 51, (2004).
  11. Bond,G.C.; Thompson, D.T. Nanocrystalline gold and gold–palladium alloy oxidation catalysts: a personal reflection on the nature of the active sites. Gold Bull. 33, 41, (2000). DOI: https://doi.org/10.1007/BF03216579
  12. Meyer,R.C.; Lemaire, S.K.; Freund, H.J. Nanocrystalline gold and gold–palladium alloy oxidation catalysts a personal reflection on the nature of the active sites. Gold Bull. 37, 72, (2004).
  13. Hashmi,A.S.K.; Hutchings, G.J.Angew. Chem, Int. Ed. Nanocrystalline gold and gold–palladium alloy oxidation catalysts: a personal reflection on the nature of the active sites. 45, 7896, (2006). DOI: https://doi.org/10.1002/anie.200602454
  14. Tandon, P.K.; Singh, S.B.; Srivastava, M. Synthesis of some aromatic aldehyedes and acid by sodium ferrate in the Presence of copper-nano particles absorbed on K10 Mont Morillonite using microwave irradiation. Appl. Organometal. Chem. 21: 264-267, (2007). DOI: https://doi.org/10.1002/aoc.1198
  15. Tandon, P.K.; Singh, S.B.; Singh, S.; Kesarwani, B. Oxidation of hydrocarbons, Cyclic alcohols and aldehydes by in situ prepared sodium ferrate. J. Indian Chem. Soc. 89, 1363-1367, (2012).
  16. Tandon, P.K.; Purwar, M.; Dwivedi, P. B.; Srivastava, M. Kinetics of iridium(III) catalyzed oxidation of benzaldehyde and p-nitro benzaldehyde by Cerium(IV) in aqueous acidic medium. Transition Metal Chemistry. 33, 791– 795, (2008). DOI: https://doi.org/10.1007/s11243-008-9112-9
  17. Tandon, P.K.; Purwar, M.; Singh, S.; Srivastava N.; Srivastava, M. Graphical separation of uncatalyzed reaction in iridium(III) catalyzed oxidation of cinnamaldehyde by cerium(IV) in aqueous acid medium. J. Mol. Catalyst A: Chemical, 293, 39 – 44, (2008). DOI: https://doi.org/10.1016/j.molcata.2008.07.007
  18. Tandon, P.K.; Srivastava, M.; Singh, S. B.; Singh, S. Liquid phase and microwave assisted oxidation of some hydrocarbons, aromatic aldehydes and phenols by cerium(IV) catalyzed by iridium(III) in acidic medium. Synthetic communications. 38: 13, 2125 – 2137, (2008). DOI: https://doi.org/10.1080/00397910802028796
  19. Tandon, P.K.; Srivastava, M.; Singh, S. B.; Srivastava, N. Liquid phase and solvent less oxidation of cyclohexane, benzene and other hydrocarbons by cerium(IV) catalyzed by iridium(III) in acidic medium. Synthetic communication, 38: 18, 3183- 3192, (2008). DOI: https://doi.org/10.1080/00397910802109265
  20. Tandon, P.K.; Purwar, M.; Dwivedi, P.B.; Srivastava, M. Kinetics of iridium(III) catalyzed oxidation of benzaldehyde and p-nitro benzaldehyde by Cerium(IV) in aqueous acidic medium. Transition Metal Chemistry, 33, 791 – 795, (2008). DOI: https://doi.org/10.1007/s11243-008-9112-9
  21. Tandon, P.K.; Srivastava, M.; Kumar, S.; Singh, S. Iridium(III) catalyzed oxidation of toluene and ethyl benzene by cerium(IV) in aqueous acidic medium, J. Mol. Catal A. Chemical, 304, 101-106, (2009). DOI: https://doi.org/10.1016/j.molcata.2009.01.035
  22. Day, M. C.; Selbin, J.J. Theoretical Inorganic chemistry (Reinhold Publishing Corporation, New York, p. 226 (1964).
  23. Vogel, AI. A text Book of quantitative inorganic analysis. 3rd Ed. Longmans: London; (1961).
  24. Chinn, L.J. Selection of oxidants in synthesis, oxidation at carbon atoms. Marcel Dekker, New York; (1971).
  25. Belew, J. S. In Oxidation techniques and applications in organic synthesis. Augustine, R. L., Ed. New York, Vol. 1, p 294,(1969).
  26. Evans, WL. Oxidation of carbohydrate with alkaline permanganatc silver oxide and copper acetate. Chem.Rev.; 6: 281-284,(1929). DOI: https://doi.org/10.1021/cr60023a001
  27. Butterworth, R. F.; Haneesian, S. Selected method of oxidation in carbohydrate chemistry Sythesis. 7-78, (1971). DOI: https://doi.org/10.1055/s-1971-21670
  28. Heyns, K.; Paulsen, H. The mechanism of carbohydrate oxidation. Adv. Carbohydr. Chem. 17, 169-176, (1962). DOI: https://doi.org/10.1016/S0096-5332(08)60136-8
  29. Seema, S. B.; Suresh M. Tuwar Oxidation of clindamycin phosphate by cerium(IV) in perchloric acid medium. A kinetic and mechanistic approach. Arabian Journal of Chemistry, (2013).
  30. Dakshinamoorthy, A. Cerium(IV) Ammonium Nitrate: A Versatile Oxidant in synthetic organic chemistry, Syn lett. 19, 3014–3015, (2005). DOI: https://doi.org/10.1055/s-2005-921893
  31. Yao, W.; Chen, Y.; Min, L.; Fang, H.; Yan Z.; Wang, J. Liquid oxidation of cyclohexane to cyclohexanol over cerium-doped MCM-41. J. Mol. Catal. A: Chemical, 246, 162-166, (2006). DOI: https://doi.org/10.1016/j.molcata.2005.10.029
  32. Ganin , E.; Amer, I. Cerium- catalyzed selective oxidation of alkylbenzenes with bromate salts. Synth. Commun. 25, 3149 – 3154,(1995). DOI: https://doi.org/10.1080/00397919508015465
  33. Tandon, P.K.; Baboo, R.; Singh, A.K.; Purwar, M. Appl. Organometal. Chem. Volume 19, Issue 10, 1979 (2005). DOI: https://doi.org/10.1002/aoc.949
  34. Shriner, R.L.; Hermann, C.K.F.; Morrill, T.C.; Curtin D.Y.; Fuson, R.C. The systematic identification of organic compounds. John Wiley and Sons: New York,pp. 321-322,(1998).
  35. Tandon, P. K.; Sahgal, S.; Singh, A. K.; Purwar, M. Oxidation of ketones by ceric perchlorate catalyzed by iridium(III). J. Mol. Catal. A: Chem. 232, 83–88.5, (2005), DOI: https://doi.org/10.1016/j.molcata.2005.01.031
  36. Tandon, P. K.; Sahgal, S.; Purwar, M.; Dhusia, M. Oxidation of ketones by cerium(IV) in presence of iridium(III) chloride. J. Mol. Catal, A: Chem., 250, 203–209.6, (2006). DOI: https://doi.org/10.1016/j.molcata.2005.12.045
  37. Tandon, P. K.; Sahgal, S.; Singh, A. K.; Kumar, S.; Dhusia, M. Oxidation of cyclic ketones by cerium(IV) in presence of iridium(III) chloride. J. Mol. Catal, A: Chem, 258, 320–326, (2006). DOI: https://doi.org/10.1016/j.molcata.2006.05.060
  38. Tse, L. H. Organic synthesis by oxidation with metal compounds, Plenum Publishing Corporation, p. 570,(1986).
  39. Mironov, I.V; and Makotchenko, E.V.; On the existence of gold (III) complex species in acid sulphate solution. Russian journal of inorganic chemistry,Vol 50, no 5, pp 799-804, (2005).