Main Article Content

Abstract

Purpose of the study: Recent advances in strategies for soft materials have transformed the wearable or bioelectronics from a rigid form into a soft, having advantages in terms of mechanical similarity with human tissue. Conductive nanocomposites are promising components as conductive interconnects in stretchable electronic system. This study is about optimizations of nanocomposite for enhancing its performances without degrading mechanical properties. 


Methodology: First, we summarize the recent advances in metallic nanocomposites. Next, we discuss the 3-dimensional percolation theory, which is basic theoretical basis to understand the random system of nanocomposite. From this, we also briefly search important parameters having potential to change percolative connections of nanoparticles.


Main Findings: We investigated required parameters, which could affect the percolation network of conductive fillers in matrix. Dimension, shape and volume fraction of fillers are very important to realize the high conductivity of conductive composite. By calculating some parameters with theoretical formula, we analyzed the effect of shape and dimensions on performance of conductive composite.


Implications: This study can help researchers to understand the potential parameters that could affect the performances of conductive nanocomposite and analyze them in qualitative and quantitative approaches.


Novelty: The potential applications of optimized conductive nanocomposite, especially focused on wearable and bio-implantable system are discussed.

Keywords

Nanoparticle Percolation Theory Conductive Nanocomposites Volume Fraction Dimension Shape

Article Details

How to Cite
Hua, R., Wang, Y., Zou, J., Jiang, A., Kim, S., & Lee, J. W. (2022). Theoretical analysis of Soft Conductive Materials for Next Generation Wearable System. International Journal of Students’ Research in Technology & Management, 10(4), 01–04. https://doi.org/10.18510/ijsrtm.2022.1041

References

  1. Adrian, Bele A. B., Codrin Tugui C. T., Mihai Asandulesa M. A., Daniela Ionita D. I., Lavinia Vasiliu L. V., George Stiubianu G. S., Mihail Iacob M. I., Carmen Racles C. R., and Maria Cazac M. C., (2018). Conductive stretchable composites properly engineered to develop highly compliant electrodes for dielectric elastomer actuators, Smart Mater. Struct., 27, 105005. https://doi.org/10.1088/1361-665X/aad977
  2. Bae, W.G., Kim, D., Kwak, M.K., Ha, L., Kang, S.M., Suh, K.Y. (2013). Enhanced Skin Adhesive Patch with Modulus-Tunable Composite Micropillars, Advanced Healthcare Materials, 2, 109-113. https://doi.org/10.10 02/adhm.201200098
  3. Balberg, I., Azulay, D., Toker ,D., Millo, O. (2004). Percolation and Tunneling in Composite Material, International Journal of Modern Physics B, 18(15), 2091-2121. https://doi.org/10.1142/S0217979204025336
  4. Fan, Z. C., Zhang Y. H., Ma Q., Zhang F., Fua H. R., Hwanga K. C., Huang Y. G., (2016). A finite deformation model of planar serpentine interconnects for stretchable electronics, International Journal of Solids and Structures, 91, 46-54. https://doi.org/10.1016/j.ijsolstr.2016.04.030
  5. Kim, S. H., Seo, H., Kang, J., Hong, J., Seong, D., Kim, H.-J., Kim, J., Mun, J., Youn, I., Kim, J., Kim, Y.-C., Seok, H.-K., Lee, C., Tok, J., Bao, Z., Son, D. (2019). An Ultrastretchable and Self-Healable Nanocomposite Conductor Enabled by Autonomously Percolative Electrical Pathways, ACS Nano, 13, 6531-6539. https://doi.org/10.1021/acsnano.9b00160
  6. Kim, Y., Zhu, J., Yeom, B., Di Prima, M., Su, X., K J. G., Yoo, S. J., Uher, C. and Kotov, N. (2013). Stretchable nanoparticle conductors with self-organized conductive pathways, Nature, 500, 59-64. https://doi.or g/10.1038/nature12401
  7. Lim, C., Hong, Y. J., Jong, J., Shin, Y., Sunwoo, S. H., Baik, S., Park, O. K., Choi, S. H., Hyeon, T., Kim, J. H., Lee, S., Kim, D. H. (2021). Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft mass-permeable, and low-impedance hydrogels, Science Advances, 7, eabd3716. https://doi.org/10.1126/sciadv .abd3716
  8. Matsuhisa, N. J., Inoue D. H., Zalar P., Jin H., Matsuba Y., Itoh A., Yokota T., Hashizume D., and Someya T. (2017). Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes, Nature materials, 16, 834. https://doi.org/10.1038/nmat4904
  9. Minsu Gu M. G., Woo-Jin Song W. J., Jaehyung Hong J. H., Sung Youb Kim S. Y. K., Tae Joo Shin T. J. S., Kotov N.A., Park S., Kim B.-S., (2019). Stretchable batteries with gradient multilayer conductors, Science Advances, 5(7), eaaw1879. https://doi.org/10.1126/sciadv.aaw1879
  10. Park, M., Park, J., Jeong, U. (2019). Design of conductive composite elastomers for stretchable electronics, Nanotoday, 9, 244-260. https://doi.org/10.1016/j.nantod.2014.04.009
  11. Sim, K., Ershad, F., Zhang, Y., Yang, P., Shim, H., Rao, Z., Lu, Y., Thukral, A., Elgalad, A., Tian, B., Taylor, D., Yu, C. (2020). An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of elelctrophysiological activity, Nature electronics, 3, 775-784. https://doi.org/10.103 8/s41928-020-00493-6
  12. Zhou, C.G., Sun, W.J., Jia, L. C., Dai, L. Xu, Yan, D. X., and Li, Z.-M. (2019). Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network, ACS Appl. Matter. Interfaces, 11, 37094−37102. https://doi.org/10.1021/acsami.9b12504