Main Article Content

Abstract

Purpose: Heart failure is a widespread health concern. A person with a heart failure has 5 years shorter life expectancy compared to a person who has a cancer. Specifically, myocardial disease is usually involved with a treatment accompanied by an electrical conduction system. To alleviate the physical burden to heart due to ventricular pacing, epicardial electronic system made of soft and elastic materials is needed.


Methodology: In this review, we discuss candidate materials for novel epicardial sensing/stimulation system that matches similar mechanical properties of heart. Materials are categorized as soft conductive materials consist of elastomer and conductive filler and tissue-like low modulus materials. Like hydrogel and its conductive composites.


Main Findings: The soft nanocomposites integrated with nanomaterials as filler and elastomer/hydrogel as matrix show potential to open a new pathway in high-performance epicardial electronic system that improve accuracy, stability, and long-term usability in diagnosis and treatment of heart diseases.


Implications: Multifunctional epicardial system that monitors electrical conduction of epicardium surface and stimulate epicardium simultaneously could be a powerful tool to diagnose and treat myocardial disease.


Novelty: This review study is focused and written in simple terms for readers.

Keywords

Epicardial Myocardial Disease Heart Failure Conductive Fillers Hydrogel Conductive Composites

Article Details

How to Cite
Sim, J., Kim, S., & Lee, J. W. (2023). A Review Study of Soft Electronic Materials for Epicardial Devices. International Journal of Students’ Research in Technology & Management, 11(1), 11–14. https://doi.org/10.18510/ijsrtm.2023.1112

References

  1. Choi, S. J., Han, S. I., Jung, D. J., Hwang, H. J., Lim, C. H., Bae, S. C., Park, O. K. (2018). Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nature Nanotechnology, 13, 1048-1056. https://doi.org/10.1038/s41565-018-0226-8, PMid:30104619 DOI: https://doi.org/10.1038/s41565-018-0226-8
  2. Gochnauer, D. L., Gilani, T. H. (2018). Conduction Mechanism in Electrically Conducting Polymers. American Journel of Undergraduate Research, 14, 49. https://doi.org/10.33697/ajur.2018.006 DOI: https://doi.org/10.33697/ajur.2018.006
  3. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beeregowda K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72. https://doi.org/10.2478/intox-2014-0009 PMid:26109881 PMCid:PMC4427717 DOI: https://doi.org/10.2478/intox-2014-0009
  4. Kayat, J., MPharm, V. Gajbhiye, R. K. Tekade, N. K. Jain (2011). Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine: Nanotechnology, Biology, and Medicine, 7, 40-49. https://doi.org/10.101 6/j.nano.2010.06.008, PMid:20620235 DOI: https://doi.org/10.1016/j.nano.2010.06.008
  5. Lim, C, Hong, Y. J., jung, J., Shin, Y., Sunwoo, S.-H., Baik, S., Park, O. K., Choi, S. H., Hyeon, T., Kim, J. H., Lee, S, Kim, D.-H. (2021). Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels, Science Advances, 7, eabd3716. https://doi.org/10.112 6/sciadv.abd3716, PMid:33962955 PMCid:PMC8104866 DOI: https://doi.org/10.1126/sciadv.abd3716
  6. Matsuhisa, N., X. Chen, Z. Bao, T. Someya (2019). Materials and structural designs of stretchable conductors. Chem. Soc. Rev., 48, 2946. https://doi.org/10.1039/C8CS00814K, PMid:31073551 DOI: https://doi.org/10.1039/C8CS00814K
  7. Ohm, Y., Pan, C., Ford, M. J., Huang, X., Liao, J., Majidi, C. (2021). An electrically conductive silver-polyacrylamide- alginate hydrogel composite for soft electronics, Nature Electronics, 4, 185. https://doi.org/10. 1038/s41928-021-00545-5 DOI: https://doi.org/10.1038/s41928-021-00545-5
  8. Park, J., S. Choi, A. H. Janardhan, S. Y. Lee, S. Raut, J. Soares, K. S. Shin, S. Yang, C. K. Lee, K. W. Kang, H. R. Cho, S. J. Kim, P. S. Seo, W. J. Hyun, S. M. Jung, H. J. Lee, N. H. Lee, S. H. Choi, M. Sacks, N. Lu, M. E. Josephson, T. G. Hyeon, D. H. Kim, H. J. Hwang (2016). Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Science Translational Medicine, 8, 344ra86. https://doi.org/10.1126/ scitranslmed.aad8568, PMid:27334261 DOI: https://doi.org/10.1126/scitranslmed.aad8568
  9. Ryplida, B., K. D. Lee, I. In, S. Y. Park (2019). Light-Induced Swelling-Responsive Conductive, Adhesive, and Stretchable Wireless Film Hydrogel as Electronic Artificial Skin. Advanced Functional Materials, 29, 1903209.
  10. https://doi.org/10.1002/adfm.201903209 DOI: https://doi.org/10.1002/adfm.201903209
  11. Sun, J. Y., X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo (2012). Highly stretchable and tough hydrogel. Nature, 489, 11409. https://doi.org/10.1038/nature11409 DOI: https://doi.org/10.1038/nature11409
  12. PMid:22955625 PMCid:PMC3642868
  13. Sutter, E., P. Albrecht, P. Sutter (2009). Graphene growth on polycrystalline Ru thin films. Applied Physics Letters, 95, 133109. https://doi.org/10.1063/1.3224913 DOI: https://doi.org/10.1063/1.3224913
  14. Yang, Z., L. Chen, D. J. McClements, C. Qiu, C. Li, Z. Zhang, M. Miao, Y. Tian, K. Zhu, Z. Jin (2022). Stimulus-responsive hydrogels in food service: A review. Food Hydrocolloids, 124, 107218.
  15. https://doi.org/10.1016/j.foodhyd.2021.107218 DOI: https://doi.org/10.1016/j.foodhyd.2021.107218