Main Article Content
Abstract
Purpose: Heart failure is a widespread health concern. A person with a heart failure has 5 years shorter life expectancy compared to a person who has a cancer. Specifically, myocardial disease is usually involved with a treatment accompanied by an electrical conduction system. To alleviate the physical burden to heart due to ventricular pacing, epicardial electronic system made of soft and elastic materials is needed.
Methodology: In this review, we discuss candidate materials for novel epicardial sensing/stimulation system that matches similar mechanical properties of heart. Materials are categorized as soft conductive materials consist of elastomer and conductive filler and tissue-like low modulus materials. Like hydrogel and its conductive composites.
Main Findings: The soft nanocomposites integrated with nanomaterials as filler and elastomer/hydrogel as matrix show potential to open a new pathway in high-performance epicardial electronic system that improve accuracy, stability, and long-term usability in diagnosis and treatment of heart diseases.
Implications: Multifunctional epicardial system that monitors electrical conduction of epicardium surface and stimulate epicardium simultaneously could be a powerful tool to diagnose and treat myocardial disease.
Novelty: This review study is focused and written in simple terms for readers.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain the copyright without restrictions for their published content in this journal. IJSRTM is a SHERPA ROMEO Journal.
Publishing License
This is an open-access article distributed under the terms of
References
- Choi, S. J., Han, S. I., Jung, D. J., Hwang, H. J., Lim, C. H., Bae, S. C., Park, O. K. (2018). Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nature Nanotechnology, 13, 1048-1056. https://doi.org/10.1038/s41565-018-0226-8, PMid:30104619 DOI: https://doi.org/10.1038/s41565-018-0226-8
- Gochnauer, D. L., Gilani, T. H. (2018). Conduction Mechanism in Electrically Conducting Polymers. American Journel of Undergraduate Research, 14, 49. https://doi.org/10.33697/ajur.2018.006 DOI: https://doi.org/10.33697/ajur.2018.006
- Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beeregowda K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60-72. https://doi.org/10.2478/intox-2014-0009 PMid:26109881 PMCid:PMC4427717 DOI: https://doi.org/10.2478/intox-2014-0009
- Kayat, J., MPharm, V. Gajbhiye, R. K. Tekade, N. K. Jain (2011). Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine: Nanotechnology, Biology, and Medicine, 7, 40-49. https://doi.org/10.101 6/j.nano.2010.06.008, PMid:20620235 DOI: https://doi.org/10.1016/j.nano.2010.06.008
- Lim, C, Hong, Y. J., jung, J., Shin, Y., Sunwoo, S.-H., Baik, S., Park, O. K., Choi, S. H., Hyeon, T., Kim, J. H., Lee, S, Kim, D.-H. (2021). Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels, Science Advances, 7, eabd3716. https://doi.org/10.112 6/sciadv.abd3716, PMid:33962955 PMCid:PMC8104866 DOI: https://doi.org/10.1126/sciadv.abd3716
- Matsuhisa, N., X. Chen, Z. Bao, T. Someya (2019). Materials and structural designs of stretchable conductors. Chem. Soc. Rev., 48, 2946. https://doi.org/10.1039/C8CS00814K, PMid:31073551 DOI: https://doi.org/10.1039/C8CS00814K
- Ohm, Y., Pan, C., Ford, M. J., Huang, X., Liao, J., Majidi, C. (2021). An electrically conductive silver-polyacrylamide- alginate hydrogel composite for soft electronics, Nature Electronics, 4, 185. https://doi.org/10. 1038/s41928-021-00545-5 DOI: https://doi.org/10.1038/s41928-021-00545-5
- Park, J., S. Choi, A. H. Janardhan, S. Y. Lee, S. Raut, J. Soares, K. S. Shin, S. Yang, C. K. Lee, K. W. Kang, H. R. Cho, S. J. Kim, P. S. Seo, W. J. Hyun, S. M. Jung, H. J. Lee, N. H. Lee, S. H. Choi, M. Sacks, N. Lu, M. E. Josephson, T. G. Hyeon, D. H. Kim, H. J. Hwang (2016). Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Science Translational Medicine, 8, 344ra86. https://doi.org/10.1126/ scitranslmed.aad8568, PMid:27334261 DOI: https://doi.org/10.1126/scitranslmed.aad8568
- Ryplida, B., K. D. Lee, I. In, S. Y. Park (2019). Light-Induced Swelling-Responsive Conductive, Adhesive, and Stretchable Wireless Film Hydrogel as Electronic Artificial Skin. Advanced Functional Materials, 29, 1903209.
- https://doi.org/10.1002/adfm.201903209 DOI: https://doi.org/10.1002/adfm.201903209
- Sun, J. Y., X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo (2012). Highly stretchable and tough hydrogel. Nature, 489, 11409. https://doi.org/10.1038/nature11409 DOI: https://doi.org/10.1038/nature11409
- PMid:22955625 PMCid:PMC3642868
- Sutter, E., P. Albrecht, P. Sutter (2009). Graphene growth on polycrystalline Ru thin films. Applied Physics Letters, 95, 133109. https://doi.org/10.1063/1.3224913 DOI: https://doi.org/10.1063/1.3224913
- Yang, Z., L. Chen, D. J. McClements, C. Qiu, C. Li, Z. Zhang, M. Miao, Y. Tian, K. Zhu, Z. Jin (2022). Stimulus-responsive hydrogels in food service: A review. Food Hydrocolloids, 124, 107218.
- https://doi.org/10.1016/j.foodhyd.2021.107218 DOI: https://doi.org/10.1016/j.foodhyd.2021.107218